source:ohio.eduScientists at Ohio University, Argonne National Laboratory, and the University of Illinois at Chicago have, for the first time, formed a charged rare earth molecule on a metal surface and rotated it — both clockwise and counterclockwise without affecting its charge — using scanning tunneling microscopy.Their work opens a new window for research on the atomic-scale manipulation of materials important to the future, from quantum computing to consumer electronics.'Rare earth elements are vital for high-technological applications including cell phones, HDTVs, and more. This is t...
Release time:
2022
-
10
-
25
viewed:1
source:natureAbstractWithin this work, we demonstrate in-situ alignment of the easy axis single-crystal magnetic particles inside a polymer matrix using fused filament fabrication. Two different magnetic materials are investigated: (i) Strontium hexaferrite inside a PA6 matrix, fill grade: 49 vol% and (ii) Samarium iron nitride inside a PA12 matrix, fill grade: 44 vol%. In the presence of the external alignment field, the strontium hexaferrite particles inside the PA6 matrix can be well aligned with a ratio of remnant magnetization to saturation magnetization in an easy axis of 0.7. No signifi...
Release time:
2022
-
10
-
24
viewed:1
source:newswiseNewswise — Beneath the Earth’s crust, super-hot rock holds the potential to provide clean, renewable energy called geothermal energy. This resource is just waiting to be tapped. However, the development of geothermal energy over the past couple decades has been hampered by significant upfront investment, financial risk, and a perceived cost higher than renewables like wind and solar. But that could all change if geothermal energy is paired with lithium extraction.Research from Pacific Northwest National Laboratory (PNNL) shows that coupling geothermal energy production with lith...
Release time:
2022
-
10
-
21
viewed:1
source:miragenewsThe Haber-Bosch process, which is commonly used to synthesize ammonia (NH3)–the foundation for synthetic nitrogen fertilizers–by combining hydrogen (H2) and nitrogen (N2) over catalysts at high pressures and temperatures, is one of the most important scientific discoveries that has helped improve crop yields and increase food production globally.However, the process requires high fossil fuel energy inputs due to its requirements of high temperatures and pressure. Hydrogen used for this process is produced from natural gas (mainly methane). This hydrogen-producing process is en...
Release time:
2022
-
10
-
20
viewed:1