Research on equivalent thermal network modeling for rare-earth giant magnetostrictive transducer source:natureAbstractOf crucial importance for giant magnetostrictive transducers (GMTs) design is to quickly and accurately analysis the temperature distribution. With the advantages of low calculation cost and high accuracy, thermal network modelling has been developed for thermal analysis of GMT. However, the existing thermal models have their limits to describe these complicated thermal behaviors in the GMTs: most of researches focused on steady-state which is incapable of capturing temper...
Release time:
2022
-
10
-
31
viewed:1
source:sciencedailyA group of researchers has, for the first time, identified rare earth elements produced by neutron star mergers.Details of this milestone were published in The Astrophysical Journal on October 26, 2022.When two neutron stars spiral inwards and merge, the resulting explosion produces a large amount of heavy elements that make up our Universe. The first confirmed example of this process was an event in 2017 named GW 170817. Yet, even five years later, identifying the specific elements created in neutron star mergers has eluded scientists, except for strontium identified in the...
Release time:
2022
-
10
-
28
viewed:1
source:scienceAbstractIn a quantum network, coherent emitters can be entangled over large distances using photonic channels. In solid-state devices, the required efficient light-emitter interface can be implemented by confining the light in nanophotonic structures. However, fluctuating charges and magnetic moments at the nearby interface then lead to spectral instability of the emitters. Here, we avoid this limitation when enhancing the photon emission up to 70(12)-fold using a Fabry-Perot resonator with an embedded 19-micrometer-thin crystalline membrane, in which we observe around 100 indivi...
Release time:
2022
-
10
-
27
viewed:3
source:natureAbstractWe provide a set of computational experiments based on ab initio calculations to elucidate whether a cuprate-like antiferromagnetic insulating state can be present in the phase diagram of the low-valence layered nickelate family (Rn+1NinO2n+2, R= rare-earth, n=1−∞) in proximity to half-filling. It is well established that at d9 filling the infinite-layer (n=∞) nickelate is metallic, in contrast to cuprates wherein an antiferromagnetic insulator is expected. We show that for the Ruddlesden-Popper (RP) reduced phases of the series (finite n) an antiferromagnetic insulating g...
Release time:
2022
-
10
-
26
viewed:3