Rapid and precise large area mapping of rare-earth doping homogeneity in luminescent materials
The date of:
2024-11-19
viewed:
0
source:Communications Materials
Doping of luminescent materials by rare-earth ions is common practice to achieve desired emission properties for a large variety of applications. As several rare-earths ions are frequently combined, it is subsequently difficult to effectively detect and control their homogeneous distribution within the host material. Here, we present a simple, rapid, large scale and precise method of rare-earth mapping using a commercial UV-Vis scanner. We discuss the influence of rare-earth distribution on the physical, optical and luminescent properties with no observable qualitative effect on photoluminescent properties and optical anisotropy. On the contrary, rare-earth-rich areas exhibit significantly higher values of refractive index and optical absorption, which allowed for their identification by the commercial scanner device. The presented method thus provides fast and accurate information about the rare-earth distribution in the material volume with high resolution (≈2.7 µm) and low limit of concentration difference detection (≈0.014 at.%) compared to other techniques, which makes it a promising candidate for high throughput measurements.
Hot News
/
Related to recommend
2024
-
12
-
04
Click on the number of times:
0
source:phys.orgLight alkanes are relatively simple molecules made entirely of carbon and hydrogen, arranged in linear or branching structures. Their oxidized counterparts, which include alcohols, epox...
2024
-
12
-
03
Click on the number of times:
0
source:TOHOKU UNIVERSITYA groundbreaking discovery by an international team of scientists has revealed room-temperature ferroelectric and resistive switching behaviors in single-element tellurium (Te)...
2024
-
12
-
02
Click on the number of times:
0
source:miningCritical Metals Corp (Nasdaq: CRML) says drilling at its Tanbreez project in southern Greenland has led to the discovery of one of the world’s highest concentrations of gallium, further d...
2024
-
11
-
29
Click on the number of times:
0
source:phys.orgBlue lasers, lasers that emit a light beam with a wavelength between 400 nm and 500 nm, are key components of various technologies, ranging from high-resolution displays to printers, me...