News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

The Geopolitics of Rare Earth Elements

The date of: 2019-04-12
viewed: 30


Editor's Note: At Stratfor, we use geopolitics to understand the constraints and advantages that geography confers on a country and the political, technological and economic decisions it compels. The exercise, taken to its logical conclusion, can extend all the way down to an atomic level. This occasional series examines the elements and the power that various combinations of protons, neutrons and electrons can exert on the world around us. In the latest installment, we look at rare earth elements.

Tucked into the sixth row of the periodic table, often represented by a single square expanded like a footnote at the bottom of the table, are the 15 lanthanides. When combined with yttrium and scandium, these materials are better known as the rare earth elements. Though they are used in very small amounts, their significance to the U.S. defense sector and to emerging and potentially disruptive technologies, combined with China's control over the majority of the market, has given the rare earth elements outsized geopolitical relevance.

The rare earth elements are already critical to the U.S. defense sector, but rare earth mining, processing and fabrication capabilities will even more strongly influence geopolitical dynamics in the coming years as the world undergoes its nascent energy transition and transportation evolution. In the near term, China will benefit from its near-monopoly, but ultimately its own growing domestic demand will limit the duration of its control over the sector and eventually force production diversification.

The Same but Different

Though they are often discussed as a group, rare earth elements have individual qualities that funnel them into specific use cases and markets. From lighting and optics to electronic displays to permanent magnets and guidance systems, each use requires a different element or different combination of elements. Additionally, not all rare earth elements are found in the same types of deposits; they occur in different places and in different concentrations. These different types of minerals are typically categorized into two subgroups based on weight: light rare earth elements (LREE) and heavy rare earth elements (HREE). China's policy adds an additional subgroup, medium rare earth elements (MREE).

King of Rare Earths

China contains roughly a third of the world's reserves of rare earth elements, and it has only come to dominate the sector recently. After China discovered new reserves in the 1960s, it took until the early 1990s for it to overtake the United States as the world's premier rare earth elements producer. China's production of rare earth elements is both geographically divided by type and highly concentrated in a handful of mines. Inner Mongolia accounts for nearly 70 percent of China's LREE production, with a single mine — Baotou Bayan Obo Mine — producing more than 50 percent of all Chinese rare earth elements. Southern China, where HREEs were first discovered in the 1960s, accounts for most of the country's HREE production. Jiangxi province alone produces roughly 50 percent of China's MREE and HREE, and Ganzhou city accounts for the majority of that production.

Even though China has ample resources and large mines, it has only gained its near monopoly on the global supply of rare earth elements by controlling the processing steps that remove the elements from the rest of the rock in which they are found. This control has presented a global supply risk, which became painfully evident in 2010 when China abruptly halted the export of rare earth ores, salts and metals to Japan, a primary consumer. The United States, which imports many of the final products that Japan produces with rare earth elements, felt a secondary impact. Though the ban was temporary, it sent shockwaves through the global community and prompted countries and producers to scramble to try and find, develop or reopen alternative rare earth element sources.

The United States, in part due to wariness of its defense technology relying so heavily on China, launched and won a World Trade Organization case against China, and in 2015 Beijing removed export quotas on rare earth elements. But in the years since the export ban on Japan, the rest of the world has had only marginal success in seeking sources outside of China. Australia was able to increase its production of LREEs with a new, environmentally controversial processing facility in Malaysia. And the United States' Molycorp mining company reopened Mountain Pass mine in California in 2012, only to declare bankruptcy and shutter the location just three years later. China still controls the vast majority of all rare earth production, and for some key medium and heavy rare earth elements such as dysprosium and terbium, which are necessary to produce permanent magnets in electric vehicles and wind turbines, China's control is virtually complete, with more than 98 percent of global supply.

Hot News / Related to recommend
  • 2024 - 06 - 14
    Click on the number of times: 0
    source:SMALL CAPSAssays from rock chip sampling at Reach Resources’ (ASX: RR1) Wabli Creek project in Western Australia have identified a primary source of high-grade niobium / rare earth element-enri...
  • 2024 - 06 - 13
    Click on the number of times: 0
    source:IMC University of Applied Sciences KremsA research collaboration between BOKU Tulln and IMC University of Applied Sciences Krems is using the further development of bioleaching and bioaccumulat...
  • 2024 - 06 - 13
    Click on the number of times: 0
    source: Oak Ridge National LaboratoryWhen element 61, also known as promethium, was first isolated by scientists at the Department of Energy's Oak Ridge National Laboratory in 1945, it completed t...
  • 2024 - 06 - 11
    Click on the number of times: 0
    source:phys.orgA team of material scientists led by Jiang Li from Shanghai Institute of Ceramics, Chinese Academy of Sciences, in Shanghai, China recently reported (Tb1-xYx)3Al5O12 magneto-optical cer...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center