News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Defects and Defect Association Determine the Actual Entropy

The date of: 2025-07-03
viewed: 1

Defects and Defect Association Determine the Actual Entropy of Perovskites Derived from Lanthanum–Calcium Ferrite



来源:ACS Publications

Perovskites La1/2Ca1/2Mn1/3Fe1/3Co1/3O3−δ and iron-rich La3/4Ca1/4Mn1/4Fe1/2Co1/4O3−δ with five cations distributed through the A (La and Ca) and B (Mn, Fe, and Co) positions have been prepared by the combustion method. The corresponding nominal configurational entropies are 1.79R for the former and 1.61R for the latter. The actual configurational entropy may vary from these values due to metal ordering and the presence of oxygen vacancies; this is observed for the iron-rich phase whose configurational entropy is as high as 1.76R. The structures of both materials have been fully determined by combining complementary techniques. La1/2Ca1/2Mn1/3Fe1/3Co1/3O3−δ is an oxygen-stoichiometric, disordered, and orthorhombically distorted perovskite, whereas La3/4Ca1/4Mn1/4Fe1/2Co1/4O3−δ presents a previously undescribed (but theoretically predicted) columnar ordering of A and B cations. This order results in the alternation along the a-axis of layers composed of La-rich sites and low-valence 3d-metals with layers composed of La-poor positions and high-valence 3d-metals. In addition, oxygen vacancies are displaced toward the latter layers.

In this work, with the aim of selecting cations with geometric and electronic (charge) compatibility, we present two new perovskites with high nominal SConfig, having different stoichiometries with five cations distributed in the A (occupied by La and Ca) and B (occupied by Mn, Fe, and Co) positions of the perovskite. The first one follows the criterion of maintaining the same stoichiometry of the metals occupying the A and B positions to achieve electroneutrality while reaching the maximum configurational entropy, namely: La1/2Ca1/2Mn1/3Fe1/3Co1/3O3 (LCMFC), the second one is enriched in one of the 3d-metals (iron) which should result in a lower SConfig: La3/4Ca1/4Mn1/4Fe1/2Co1/4O3 (LCMFC-IR). These materials exhibit nominal configurational entropies as high as 1.79R for LCMFC and 1.61R for LCMFC-IR.




Hot News / Related to recommend
  • 2025 - 07 - 10
    Click on the number of times: 0
    Computational Investigations of Metal–Metal Bonding in Molecular Thorium Compounds and Ce and Group IV Analogues来源:ACS PublicationsWe report quantum chemical investigations of metal–metal bonding in m...
  • 2025 - 07 - 09
    Click on the number of times: 0
    来源:ACS PublicationsThe reaction between isophthalic acid (H2L1) and Gd(NO3)3·6H2O leads to the formation of a two-dimensional (2D) extended framework with the molecular formula [Gd2(L1)3(H2O)2]n ...
  • 2025 - 07 - 08
    Click on the number of times: 0
    来源:ACS PublicationsA straightforward synthesis of Cp*2Sc(AlMe4) (Cp* = C5Me5) applying Cp*2ScCl(thf) and LiAlMe4/AlMe3 is described. Donor-assisted trimethyltriel exchange gives access to Cp*2Sc(EMe4)...
  • 2025 - 07 - 07
    Click on the number of times: 0
    Zero-Field Single Molecular Magnet Behavior of Selenotungstate-Encapsulated Dy(III) Tetramers 来源:ACS PublicationsTwo tartaric acid-bridged organic–inorganic hybrid Dy(III)-substituted selenotungs...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务