News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Fluid-specific detection of environmental pollutant moxifloxacin

The date of: 2024-11-20
viewed: 0
Fluid-specific detection of environmental pollutant moxifloxacin hydrochloride utilizing a rare-earth niobate decorated functionalized carbon nanofiber sensor platform


   
source:sciencedirect
Abstract
The development of precise and efficient detection methods is essential for the real-time monitoring of antibiotics, especially in environmental and biological matrices. This study aims to address this challenge by introducing a novel electrochemical sensor for the targeted detection of moxifloxacin hydrochloride (MFN), a fourth-generation fluoroquinolone. The sensor is based on a holmium niobate (HNO) and functionalized carbon nanofiber (f-CNF) nanocomposite, synthesized via a hydrothermal approach and subsequently characterized for its structural and electrochemical properties. When deposited onto a glassy carbon electrode (GCE), the HNO/f-CNF nanocomposite demonstrated exceptional electrochemical performance, as assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The sensor exhibited remarkable sensitivity, with a detection limit of 0.034 μM, a quantification limit of 0.11 μM, and a sensitivity of 0.69 μA μM−1 cm−2. It also achieved a broad linear detection range from 0.001 μM to 1166.11 μM, making it highly effective for MFN detection across various complex matrices, including environmental waters, biological fluids, and artificial saliva, with recovery rates between 98.15% and 101.75%. The novelty of this work lies in the unique combination of HNO's catalytic properties and f-CNF's enhanced electron transport, establishing a highly selective and sensitive platform for MFN detection. This sensor not only advances the field of electrochemical sensing but also offers a promising tool for real-time environmental and pharmaceutical monitoring.



Hot News / Related to recommend
  • 2025 - 03 - 24
    Click on the number of times: 0
    source:ACS PublicationsRare earth (RE)-based complexes, due to their unique electronic structures, exhibit excellent fluorescence properties with high quantum yield and a long lifetime. From an applic...
  • 2025 - 03 - 21
    Click on the number of times: 0
    source:resourceworldCritical Metals Corp. [NASDAQ: CRML] has released historical drilling results from the Tanbreez Project, one of the largest, rare earth deposits in the world located in Southern Gr...
  • 2025 - 03 - 20
    Click on the number of times: 0
    source:SMALL CAPSAxel REE’s (ASX: AXL) confidence that its Caladão project in Brazil will be one of the only rare earth element (REE) and gallium resources in the world has been boosted with furt...
  • 2025 - 03 - 19
    Click on the number of times: 0
    Octupole excitation: Research provides direct evidence for rare, pulsing pear shapes in gadolinium nuclei source:University of SurreyFor the first time, scientists have acquired direct evidence o...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务