News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Research effort twists halide perovskites from a distance

The date of: 2024-10-30
viewed: 0
source:National Renewable Energy Laboratory


A research team has discovered a new process to induce chirality in halide perovskite semiconductors, which could open the door to cutting-edge electronic applications.
The development is the latest in a series of advancements made by the team involving the introduction and control of chirality. Chirality refers to a structure that cannot be superimposed on its mirror image, such as a hand, and allows greater control of electrons by directing their "spin." Most traditional optoelectronic devices in use today exploit control of charge and light but not the spin of the electron.
The researchers have been able to create a spin-polarized LED using chiral perovskite semiconductor in the absence of extremely low temperatures and a magnetic field, as was previously reported. The newest advance accelerates the materials development process for spin control.
The details are spelled out in a new paper, "Remote Chirality Transfer in Low-Dimensional Hybrid Metal Halide Semiconductors," which is published in the journal Nature Chemistry. The key was in introducing a chiral molecule with a different headgroup into the perovskite.
The chiral molecule intentionally does not fit into the perovskite lattice but "twists" the structure from the surface. The chiral molecule transfers its properties several unit cells or layers deep into the perovskite structure. This twist can be controlled by employing left- or right-handed chiral molecules into the grain boundaries and surfaces of a perovskite film, which control the spin properties accordingly.
Remote chirality transfer in hybrid metal halides. Credit: Nature Chemistry (2024). DOI: 10.1038/s41557-024-01662-2
Such twisted structures enable unique functionalities for energy applications where spin-control adds additional potential by acting as electronic spin filters.
Md Azimul Haque, the first author of the paper, said introducing chirality to the low-dimensional perovskite semiconductors generally includes a chiral molecule being present in the perovskite lattice, which needs extensive analysis every time one changes the composition of the chiral molecule.
The ability of a proximal chiral molecule to transfer its properties without changing the perovskite composition makes the process simple, faster, and less limiting on the composition, he said.
"We can create materials with known properties now with added chirality very easily compared to traditional methods," said Haque, a postdoctoral researcher. "The next step is to experiment with the materials and incorporate them into new applications."
Hybrid perovskites refer to a crystalline structure, containing both inorganic and organic components. In other semiconductors, such as those made from silicon, the material is purely inorganic and rigid. Hybrid perovskites are soft and more flexible, "so a twisting molecule on the surface, will extend the effect deeper into this semiconductor than it can in most rigid, inorganic semiconductors," said Joey Luther, a National Renewable Energy Laboratory (NREL) senior research fellow and corresponding author.
"This is a new way to induce chirality in halide perovskites," Luther said, "and it could lead to technologies that we can't really envision but might be somewhere along the lines of polarized cameras, 3D displays, spin information transfer, optical computation, or better optical communication—things of that nature."



Hot News / Related to recommend
  • 2025 - 03 - 24
    Click on the number of times: 0
    source:ACS PublicationsRare earth (RE)-based complexes, due to their unique electronic structures, exhibit excellent fluorescence properties with high quantum yield and a long lifetime. From an applic...
  • 2025 - 03 - 21
    Click on the number of times: 0
    source:resourceworldCritical Metals Corp. [NASDAQ: CRML] has released historical drilling results from the Tanbreez Project, one of the largest, rare earth deposits in the world located in Southern Gr...
  • 2025 - 03 - 20
    Click on the number of times: 0
    source:SMALL CAPSAxel REE’s (ASX: AXL) confidence that its Caladão project in Brazil will be one of the only rare earth element (REE) and gallium resources in the world has been boosted with furt...
  • 2025 - 03 - 19
    Click on the number of times: 0
    Octupole excitation: Research provides direct evidence for rare, pulsing pear shapes in gadolinium nuclei source:University of SurreyFor the first time, scientists have acquired direct evidence o...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务