News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Cheap yet ultrapure titanium metal might enable widespread use in industry

The date of: 2024-06-21
viewed: 0
source: University of Tokyo


Titanium is the ninth most abundant element in the Earth's crust, yet products based on pure titanium are uncommon because it's expensive to remove the oxygen from titanium ore. Reducing costs would encourage manufacturers to take advantage of the highly useful properties of titanium in their products.
Now, in a study published in Nature Communications, researchers from the Institute of Industrial Science, The University of Tokyo, have developed a procedure that reduces the cost of producing titanium that's almost entirely free of oxygen. This oxygen removal protocol might benefit technological development and environmental sustainability.
Titanium is an incredibly versatile material because not only does it typically resist chemical damage, it's strong yet light. For example, its light weight compared with other metals is why the base frame of modern iPhones consists of titanium alloy, despite the increased cost.
Unfortunately, producing ultrapure titanium is significantly more expensive than manufacturing steel (an iron alloy) and aluminum, owing to the substantial use of energy and resources in preparing high-purity titanium. Developing a cheap, easy way to prepare it—and facilitate product development for industry and common consumers—is the problem the researchers aimed to address.
"Industry mass-produces iron and aluminum metal—but not titanium metal, because of the expense of removing the oxygen from the ore," explains Toru H. Okabe, lead author of the study. "We use an innovative technology based on rare-earth metals that removes oxygen from titanium to 0.02% on a per-mass basis."
A critical step in the researchers' protocol is reacting molten titanium with yttrium metal and yttrium trifluoride or a similar substance. The end result is a low-cost, solid, de-oxygenated titanium alloy. The reacted yttrium can be recycled for further use. A highlight of the researchers' work is that even titanium scrap that contains large amounts of oxygen can be processed in this manner.
"We're excited by the versatility of our protocol," says Toru H. Okabe. "The lack of intermediate compounds and straightforward procedures will facilitate adoption in industry."
This work is an important step forward in making more efficient use of high-purity titanium than at present. A limitation of this work is that the resulting de-oxygenated titanium contains yttrium, up to 1% by mass; yttrium can influence the mechanical and chemical properties of titanium alloy. After solving the yttrium contamination problem, applications to industrial manufacturing will be straightforward.



Hot News / Related to recommend
  • 2024 - 10 - 22
    Click on the number of times: 0
    source:proactive investorsAclara Resources Inc (TSX:ARA, OTC:ARAAF) chief operating officer Barry Murphy joined Proactive to discuss the company's recent completion of a conceptual engineering stu...
  • 2024 - 10 - 21
    Click on the number of times: 0
    source:INNOVATIONNamibia Critical Metals Inc. has announced the renewal of its Environmental Clearance Certificate for mining activities on Mining License 200, covering the Lofdal Heavy Rare Earth Pro...
  • 2024 - 10 - 18
    Click on the number of times: 0
    source:MININGEurope-focused Critical Metals Corp. (Nasdaq: CRML) said on Tuesday it had obtained an extension for the exploitation license of its majority-owned Tanbreez project in Greenland, the worl...
  • 2024 - 10 - 17
    Click on the number of times: 0
    source:Investor.News“The global supply chain for heavy rare earth elements like dysprosium and terbium, essential for high-coercivity permanent magnets used in electric motors, is critically dependent...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务