News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Researchers establish a high-throughput multiscale evaluation

The date of: 2024-04-29
viewed: 0
Researchers establish a high-throughput multiscale evaluation method for thermal stress in thermal barrier coatings


 

source:phys.org
Thermal barrier coatings (TBCs) are widely used in gas turbine engines to obtain elevated working temperatures and improve engine efficiency. The phase transition of the ceramic layer is accompanied by a large volume difference, causing the concentration of thermal stress, eventually leading the TBCs to fall off and fail. Therefore, it is necessary to quantitatively evaluate the magnitude and distribution of thermal stress induced by phase transition in the ceramic layer.
A team of material scientists led by Prof. Xiaoyu Chong from Kunming University of Science and Technology in Kunming, China recently established a high-throughput multiscale evaluation method for thermal stress in TBCs that considers the phase transition of the top ceramic materials by coupling first-principles calculations with finite element simulations.
The method quantitatively evaluates and visualizes thermal stress of the real TBCs' structure under thermal cycling by multifield coupling, which can provide an important theoretical basis and guidance for the life prediction and reverse design of coating materials.
The team has published their work in Journal of Advanced Ceramics.
"In this report, we develop a high-throughput multiscale evaluation method for thermal stress in multilayered systems, which considers the phase transition of the top ceramic materials by coupling first-principles calculations with finite element simulations. This approach can quantitatively evaluate and visualize the thermal stress in TBCs based on real structures, considering the actual service environment subjected to thermal cycling," said Chong, a professor at the Faculty of Materials Science and Engineering at Kunming University of Science and Technology (China), whose research interests focus on the field of high-throughput multiscale computing and machine learning.
"The thermophysical properties' input in finite element simulations are calculated by first-principles calculations, in which the multiscale method can consider the influence of phase transition and temperature and simultaneously reduce the cost and time of obtaining thermophysical properties by experiments," he continued.
It is challenging to directly observe the phase transformation process of ceramic coating. As one of the main reasons for coating failure, thermal stress is subject to a lack of quantitative testing and characterization methods, and the high temperature service environment also increases the difficulty of phase transformation thermal stress testing.
"The finite element simulations coupled with multiple physical fields can visualize and quantitatively evaluate thermal stress of TBCs. However, the thermophysical properties required for finite element simulations are derived from experimental measurements, which ignores the effects of phase transition and temperature," said Mengdi Gan, the first author of the paper and a Ph.D. student supervised by Prof. Chong.
In the study, the researchers develop a high-throughput multiscale evaluation method for thermal stress in multilayered systems, which considers the phase transition of the top ceramic materials by coupling first-principles calculations with finite element simulations.
This approach can quantitatively evaluate and visualize the thermal stress in TBCs based on real structures, considering the actual service environment subjected to thermal cycling. The thermophysical properties input in finite element simulations are calculated by first-principles calculations, in which the multiscale method can consider the influence of phase transition and temperature and simultaneously reduce the cost and time of obtaining thermophysical properties by experiments.
In this work, rare earth tantalites (RETaO4) are introduced as ceramic layers, and the results demonstrate that thermal stress undergoes a rapid escalation near the phase transition temperature, particularly in the TBCs_GdTaO4 system. This discontinuity in thermal stress may originate from the large alterations in Young's modulus and thermal conductivity near the phase transition temperature.
The TBCs_NdTaO4 and TBCs_SmTaO4 systems exhibit noteworthy temperature drop gradients and minimal thermal stress fluctuations, which are beneficial for extending the service lifetime of the TBCs. This approach facilitates the prediction of failure mechanisms and provides theoretical guidance for the reverse design of TBCs materials to obtain low thermal stress systems.
Other contributors include Mengdi Gan, Tianlong Lu, Wei Yu, Jing Feng from the Faculty of Materials Science and Engineering at Kunming University of Science and Technology in Kunming, China.



Hot News / Related to recommend
  • 2024 - 05 - 29
    Click on the number of times: 0
    source:Tohoku UniversityResearchers have harnessed the power of artificial intelligence to significantly advance the discovery and optimization of multicomponent metal oxide electrocatalysts for the o...
  • 2024 - 05 - 28
    Click on the number of times: 0
    Large-area preparation of flexible carbon nanofilms with synergistically enhanced transmittance and conductivity source:physLarge-area flexible transparent conductive films (TCFs) are urgently ne...
  • 2024 - 05 - 27
    Click on the number of times: 0
    source:miningResearch led by the University of Utah has documented elevated concentrations of rare earth elements, or REEs, in active mines rimming the Uinta coal belt of Colorado and Utah.The work, p...
  • 2024 - 05 - 24
    Click on the number of times: 0
    source:resource worldYork Harbour Metals Inc. [TSXV-YORK; OTCQB-YORKF; FSE-5DE] announced positive results from channel sampling at its Rare Earth Elements Bottom Brook projects’ newly discovered Bott...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务