News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Scientists get better understanding of how rare earth metal in lightbulbs forms

The date of: 2024-04-02
viewed: 0

source:mining


Researchers at CERN’s Neutron Time-of-Flight facility (n_TOF) collaboration are investigating how cerium is produced in stars.

Cerium is a rare earth metal that is used in some types of lightbulbs, flat-screen TVs and biomedical applications. While the element is rare in our planet’s crust, it is slightly more abundant in the universe.

“The measurement we carried out enabled us to identify nuclear resonances never observed before in the energy range involved in the production of cerium in stars,” Simone Amaducci, first author of the paper that describes the findings, said in a media statement. “This is thanks to the very-high-energy resolution of the experimental apparatus at CERN and the availability of a very pure sample of cerium 140.”

The abundance of elements heavier than iron observed in stars -such as tin, silver, gold, and lead- can be reproduced mathematically by hypothesizing the existence of two neutron capture processes: the slow (s) process and the rapid (r) process.

The s process corresponds to a neutron flux of 10 million neutrons per cubic centimetre. The r process has a flux of more than one million billion billion neutrons per cubic centimetre. The s process is theorized to produce about half of the elements heavier than iron in the universe, including cerium.

CERN’s n_TOF is designed to study neutron interactions, such as those that occur in stars. In this study, the scientists used the facility to measure the nuclear reaction of the cerium 140 isotope with a neutron to produce isotope 141.

According to sophisticated theoretical models, this particular reaction plays a crucial role in the synthesis of heavy elements in stars. Specifically, the scientists looked at the reaction’s cross-section: the physical quantity that expresses the probability that a reaction occurs. They measured the cross section at a wide range of energies with 5% more accuracy than previous measurements.

The results open up new questions about the chemical composition of the universe.

Sagittarius has some clues

“What intrigued us at the beginning was a discrepancy between theoretical star models and observational data of cerium in the stars of the M22 globular cluster in the Sagittarius constellation,” Sergio Cristallo, who proposed the experiment, said. “The new nuclear data differs significantly, up to 40%, from the data present in the nuclear databases currently used, definitely beyond the estimated uncertainty.”

These results have notable astrophysical implications, suggesting a 20% reduction in the contribution of the s process to the abundance of cerium in the universe. This means a paradigm shift is required in the theory of cerium nucleosynthesis: other physical processes that are not currently included would need to be considered in calculations of stellar evolution.

Furthermore, the new data have a significant impact on scientists’ understanding of the chemical evolution of galaxies, which also affects the production of heavier elements in the universe.




Hot News / Related to recommend
  • 2024 - 07 - 26
    Click on the number of times: 0
    Surface oxygen functionality controls selective transport of metal ions through graphene oxide membranessource: Pacific Northwest National LaboratoryDeveloping efficient, selective, and scalable separ...
  • 2024 - 07 - 25
    Click on the number of times: 0
    source:Helmholtz Association of German Research CentresThe special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electr...
  • 2024 - 07 - 25
    Click on the number of times: 0
    source:SMALL CAPSGold Mountain (ASX: GMN) has defined a series of high-priority drill targets at its Down Under project in Brazil’s Bahia state after confirming key pathfinders for high-grade rare ear...
  • 2024 - 07 - 25
    Click on the number of times: 0
    Synthesis of a new compound with excellent intrinsic magnetic properties using smaller amounts of rare earth elementssource: National Institute for Materials ScienceThe National Institute for Material...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务