News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Scientists synthesize rare earth element key for biomedical research

The date of: 2023-03-15
viewed: 1

Geoscientists at Trinity College Dublin have developed a cheap and environmentally friendly method for the synthesis of cerium, a rare earth mineral that holds promise for the treatment of diseases associated with inflammation, including cancer.
In a paper published in the journal RSC Advances, the researchers explain that they found out why cerianite is associated with REE-carbonates and how exactly it forms in nature. At the same time, they produced a sort of cookbook for material engineers with easy recipes for the synthesis of Ce-carbonates and cerianite with different sizes and shapes.
Cerianite, or cerium-oxide (CeO2) is a compound widely used by the energy, transportation, electronics and healthcare sectors. It is also considered a promising material for biomedical research due to its antioxidant properties. Cerianite nanoparticles are being investigated as therapeutic agents for the treatment of diseases associated with oxidative stress and inflammation, including cancer.
“Our simple method allows for the production of cerianite with different sizes and shapes. The smallest particles are just a few nanometers and the largest are 50 micrometres. This will be useful in biomedical sciences, production of carbon-neutral technologies and material sciences,” Juan Diego Rodriguez-Blanco, lead author of the paper, said in a media statement.
Rodriguez-Blanco explained that the study shows how he and his colleagues synthesized cerianite using various methods with various shapes and sizes by using different crystallization routes, some of them mimicking natural processes.
In detail, the scientists combined two simple fabrication processes at low temperatures. By adjusting parameters such as temperature, duration of the experiment and concentration, they found that cerianite can form via cerium carbonates, acting similarly to other rare earths such as lanthanum, praseodymium, neodymium and dysprosium. They also found that cerium carbonates eventually decarbonize and form cerianite.
In Rodriguez-Blanco’s view, their methods provide primary information on the synthesis of nanometric and micrometric cerium carbonate and cerianite.
The researcher also pointed out that the processes he and his co-authors described are non-toxic and use common chemicals; thus, they are energy-and material-efficient and can be easily replicated.

Hot News / Related to recommend
  • 2023 - 12 - 08
    Click on the number of times: 0
    source:proactive investorsAmerican Rare Earths Ltd (ASX:ARR, OTCQB:ARRNF) has delivered “outstanding” results from its recently completed diamond drilling program at Overton Mountain, situated within ...
  • 2023 - 12 - 08
    Click on the number of times: 0
    source:miningJOHANNESBURG ( – South Africa is recognised as having the potential to play a significant role in the establishment of a more diversified supply chain of critical rare ea...
  • 2023 - 12 - 06
    Click on the number of times: 0
    source:the westKula Gold has unveiled compelling grades of up 2534 parts per million total rare earth oxides (TREO) in an air-core (AC) and reverse-circulation (RC) campaign at its Rankin Dome joint v...
  • 2023 - 12 - 06
    Click on the number of times: 0
    source:miningIdaho National Laboratory (INL), in collaboration with US Critical Materials, announced on Monday a multi-phase project to develop rare earths processing methods.US Critical Materials’ fl...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center