News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

KIMS researchers develop rare-earth-reduced permanent magnet

The date of: 2022-04-28
viewed: 1
source:Powder Metallurgy Review

XRD patterns of (a) amorphous (first row) and crystalline (second row) (Nd0.7Ce0.3)-Fe-B melt-spun precursors, and (b) their changes after hot-deformation. To identify phases formed in anisotropic hot-deformed (HD) magnets clearly, the HD samples for XRD analysis were pulverized into powders. (c) Demagnetisation curves for HD magnets fabricated from amorphous (HD-A, red line) and crystalline (HD-C, black line) precursors (Courtesy Scripta Materialia)
Researchers from the Department of Magnetic Materials in the Powder Materials Division at the Korea Institute of Materials Science (KIMS), a government-funded research institute under the Ministry of Science and ICT, have reportedly succeeded in developing rare-earth-reduced permanent magnet that can achieve the commercial magnet (grade 42) level of performance while reducing the amount of neodymium (Nd) rare earth by approximately 30%.
Neodymium is expensive with an unstable supply chain, but is essential for manufacturing rare earth permanent magnets. In order to develop a neodymium-reduced permanent magnet, the content of cerium (Ce), an inexpensive element, has to be increased, instead of reducing the content of neodymium. Until now, with the increased content of cerium, it was not able to prevent the deterioration of the magnetic properties. The research team focused on clarifying the cause and mechanism of the deterioration of the magnetic properties caused by the increased cerium content, and are said to have successfully solved the problem by controlling atomic-scale microstructure.
The researchers discovered that unnecessary magnetic particles were formed in the existing manufacturing process, which are the cause of the deterioration of the magnet’s microstructure and magnetic properties. They improved the microstructure of magnets and enhance magnetic properties to prevent the formation of unnecessary magnetic particles by suppressing their atomic diffusion of them.
They also applied the melt-spinning method and the hot-deformation method, which have very fast cooling velocity compared to the conventional process, to the manufacturing process of rare-earth-reduced precursors and permanent magnets, respectively. As a result, they succeeded in optimising the microstructure of the magnet by suppressing the formation of unnecessary magnetic particles. In addition, they were able to simultaneously improve the residual magnetism and coercive force, which are the main properties of permanent magnets. As the residual magnetism and coercive force are in a trade-off relationship, the technology that improves both main properties is very useful and valuable.
Dr Kim Tae-Hoon, a senior researcher at KIMS who co-led the research team, commented, “When the technology is commercialised, it will simultaneously solve the resource problems and material, parts, and equipment issues of the domestic rare earth permanent magnet material market. This is only the beginning. With further research in the future, we will spare no effort to lead the development of the domestic rare earth permanent magnet industry.”
This research was supported by the material technology development project of magnetic powder with performance modified composite magnetic structure, a fundamental research project of KIMS and funded by the Ministry of Science and ICT.
The research results were published in Scripta Materialia titled ‘High-performance Ce-substituted) (Nd0.7Ce0.3)-Fe-B hot-deformed magnets fabricated from amorphous melt-spun powders’. It is available here.

Hot News / Related to recommend
  • 2023 - 03 - 30
    Click on the number of times: 0
    source:natureAbstractThe world’s largest current Cu resource is volcanic arc-hosted, porphyry copper deposits. Whether unusual parental magmas or fortuitous combinations of processes accompanying empl...
  • 2023 - 03 - 28
    Click on the number of times: 1
    source:designnewsRare earth elements (REEs) are a group of 17 metallic elements that are used in high-tech electronics, electric vehicle motors, defense systems, and other consumer goods, according to...
  • 2023 - 03 - 27
    Click on the number of times: 1
    source:techxploreRare earth elements (REE), a group of 17 metallic elements, are in nearly every piece of technology, including cell phones, televisions, computers and almost every part of a vehicle. ...
  • 2023 - 03 - 24
    Click on the number of times: 1
    source:astrobiologyA new biosensor engineered by Penn State researchers offers scientists the first dynamic glimpses of manganese, an elusive metal ion that is essential for life.The researchers engin...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center