News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

OLPL Materials Help Overcome the Flaws of Traditional Inorganic

The date of: 2022-04-14
viewed: 1
OLPL Materials Help Overcome the Flaws of Traditional Inorganic Long Persistent Luminescence Systems



Organic long persistent luminescence (OLPL) have great potential for overcoming the defects associated with conventional inorganic long persistent luminescence systems of silicate, aluminate and sulfate-based matrices doped along with rare-earth elements.

But the afterglow emission from the majority of the organic materials are thermal activated delayed florescence (TADF) and phosphorescence (Phos), their afterglow durations are generally restricted to seconds level, far from equivalent to the hour-level of inorganic LPL materials.

To obtain OLPL, the production of long-lived intermediates, like charged-separated (CS) states, is one of the possible routes, which had been verified in a few electron-donating and electron-accepting organics blends.

Unluckily, the presently reported OLPL blends have to be engineered under a nitrogen atmosphere, so as to avoid quenching the charge-transfer (CT) states and CS states from water and oxygen. It is still a great challenge to identify OLPL under ambient conditions, especially in aqueous media.

In a new paper published in Light: Science & Application, a research team, headed by Professor Hengwei Lin and Professor Kai Jiang from the International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, China, and co-workers reported the making of the first carbon dots (CDs)-based organic blend (named m-CDs@CA) displaying excellent LPL feature.

The afterglow has been noted to be more than one hour of duration through irradiation by a hand-held UV lamp (365 nm). The afterglow intensity of m-CDs@CA following 10 seconds conforms to an inverse power function of time t-1.

This denotes the LPL emission must be originated from newly-formed ultralong-lived emissive states, instead of the common triplet and/or singlet states (Phos and/or TADF).

In a more efficient manner, this LPL material is relevant under ambient conditions and even in an aqueous medium. Thus, it could be utilized as inks and comfortably patterned onto various substrates for different applications (for example, lighting the emergency sign), as well as dispersed in epoxy resin for easily fabricating luminous pearl.

This work not only provides a very unique example of an OLPL system that displays an hour-level of strong afterglow, but it also paves the way for the development and application of rare-earth-free OLPL materials.

Additional studies verified the origin of this strong OLPL.

As the researchers suggested, “Notably, photo-induced electron transfer properties of CDs had been studied previously, which demonstrated that CDs can serve as either electron donors or electron acceptors. Given these findings, photo-induced CT and CS states might be obtained by properly designing CDs-organic molecule blends, consequently producing LPL.”

From the presence of CT and CS states verified by the systematic photophysical investigations, the LPL of m-CDs@CA originated from the exciplexes of m-CDs and CA. More significantly, the CA was in situ generated from urea during the microwave heating process and then bonded with m-CDs through C-N bond.

Such in situ fixing of CDs in CA crystals and the formation of a covalent bond between CA and m-CD play crucial roles in stiffening the micro-environment of CT and CS states of the exciplexes. Hence, it triggers LPL of m-CDs@CA and avoids its quenching from water and oxygen.

Thus, the scientists summarized that, “To realize such a purpose, the following conditions are needed to be considered: i) the energy levels of CDs and organic molecule should be fitted for electron transfer (i.e., the highest occupied molecular orbital (HOMO) and LUMO energy levels of donor being respectively higher than that of the acceptor);

“ii) CDs are better to be employed as the electron donors and immobilized into an appropriate electron-acceptor matrix, providing a rigid micro-environment to stabilize the CT and CS states; iii) formation of covalent bonds is preferred between the CDs and matrix molecule, so as to further stabilize the excited states and avoid quenching by oxygen and water.”

Such considerations could be preliminarily considered as the fundamental principles for developing and making CDs-based OLPL blends.

“This study developed a facile strategy to prepare OLPL materials that being applicable under ambient conditions, which could not only effectively expand the scope of CDs-related research and applications, but also offer a new idea for designing OLPL systems with robust features,” forecasted the researchers.

Hot News / Related to recommend
  • 2024 - 06 - 14
    Click on the number of times: 0
    source:SMALL CAPSAssays from rock chip sampling at Reach Resources’ (ASX: RR1) Wabli Creek project in Western Australia have identified a primary source of high-grade niobium / rare earth element-enri...
  • 2024 - 06 - 13
    Click on the number of times: 0
    source:IMC University of Applied Sciences KremsA research collaboration between BOKU Tulln and IMC University of Applied Sciences Krems is using the further development of bioleaching and bioaccumulat...
  • 2024 - 06 - 13
    Click on the number of times: 0
    source: Oak Ridge National LaboratoryWhen element 61, also known as promethium, was first isolated by scientists at the Department of Energy's Oak Ridge National Laboratory in 1945, it completed t...
  • 2024 - 06 - 11
    Click on the number of times: 0
    source:phys.orgA team of material scientists led by Jiang Li from Shanghai Institute of Ceramics, Chinese Academy of Sciences, in Shanghai, China recently reported (Tb1-xYx)3Al5O12 magneto-optical cer...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center