News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Crystal arrangement results in 1,000x more power from ferroelectric solar cells

The date of: 2021-08-06
viewed: 6

source:PV magazine

German researchers developed a lattice arrangement of three different layers of ferroelectric crystals that created a powerful photovoltaic effect.

Combining ultra-thin layers of different materials can raise the photovoltaic effect of solar cells by a factor of 1,000, according to researchers at Martin Luther University Halle-Wittenberg (MLU) in Germany.

Their findings, published in the journal Science Advances, described a lattice arrangement of three different layers of ferroelectric crystals (in this case, of barium titanate, strontium titanate, and calcium titanate) that created a powerful solar energy producing effect.

Ferroelectric means that the material has spatially separated positive and negative charges. The charge separation leads to an asymmetric structure that enables electricity to be generated from light.

Ferroelectric crystals differ from conventional silicon cells in that they do not require a p-n junction to create the PV effect. In other words, there is no need to create positively and negatively doped layers within the cell. The researchers said that change could make solar panels easier to produce.

MLU researchers have been experimenting with barium titanate to take advantage of these properties. However, pure barium titanate does not absorb much sunlight; as a result, it generates a relatively low photocurrent. The research showed that combining ultra-thin layers of different materials can significantly increase a cell’s yield.

Researchers added a thin paraelectric layer to the cell. Although this layer does not have separated charges, it can become ferroelectric under certain conditions; for example, in low temperatures or when the chemical structure is slightly modified.

MLU physicist Dr. Akash Bhatnagar and his team discovered that a much stronger photovoltaic effect occurs when the ferroelectric layer alternates with not one, but two different paraelectric layers.

The team embedded barium titanate between strontium titanate and calcium titanate. This was achieved by vaporising the crystals with a high-powered laser, redepositing them on carrier substrates. The result was a material made of 500 layers that was only about 200 nanometers thick.

The MLU team irradiated the cell with laser light to test the new material, and the results surprised them. Compared to pure barium titanate of a similar thickness, the current flow was up to 1,000 times stronger, despite the proportion of barium titanate having been reduced by almost two-thirds.

“The interaction between the lattice layers appears to lead to a much higher permittivity – in other words, the electrons are able to flow much more easily due to the excitation by the light photons,” Bhatnagar said.

The studies show the effect is also resilient as it remained nearly constant over a six-month test period. Further research is underway to understand what exactly causes this photovoltaic effect.

Hot News / Related to recommend
  • 2023 - 06 - 07
    Click on the number of times: 0
    source:SMALL CAPSBrazil-focused explorer BBX Minerals (ASX: BBX) has used ternary radiometric imaging and the Th/U factor to define 14 high-priority targets across 19.4 square kilometres of the Ema an...
  • 2023 - 06 - 07
    Click on the number of times: 0
    source:CIMMAGAZINEThe Saskatchewan Research Council (SRC) has designed and manufactured Canada’s first proprietary commercial-scale solvent extraction cell technology, which is designed to upgrade rar...
  • 2023 - 06 - 05
    Click on the number of times: 0
    source:MissoulianA Nevada company that hopes to mine what it describes as the nation's richest deposit of rare-earth elements at the south end of the Bitterroot Mountains plans to conduct further ...
  • 2023 - 06 - 05
    Click on the number of times: 0
    Browns Range’s rare earths project to contribute to potential alternative permanent magnets supply chainsource:Innovation news networkNorthern Minerals has been around for more than a decade and start...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center