News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Recycling rare-earth elements from dead lithium batteries

The date of: 2021-05-10
viewed: 0

source:PV magazine

American Resources Corporation is developing a process to separate pure rare earth metals from lithium-ion batteries used in electric vehicles or power plants based on renewable energy. The technique is described as a two-zone ligand-assisted displacement chromatography (LAD) that is able to produce metals with high yields and purity of over 99%.

US-based raw materials supplier American Resources Corporation is developing a technology to recycle rare-earth metals such as neodymium (Nd), praseodymium (Pr), and dysprosium (Dy) from lithium-ion batteries at the end of their lifecycle.

The patented technology, which the company acquired from the Purdue University in February, consists of a process to separate pure rare earth metals and critical elements from coal byproducts, recycled permanent magnets, and lithium-ion batteries used in electric vehicles or power plants based on renewable energy.

The technique is described as a two-zone ligand-assisted displacement chromatography (LAD) that is able to produce metals with high yields and purity of over 99%. Displacement chromatography is a preparative technique that is commonly used to place a sample onto the head of a column and then displace it through a solute.

The system is based on a zone-splitting method and is claimed to have an overall production capacity that can exceed 100 kg of rare earth elements per m3 per day. It requires three chromatography columns, an extractant, ethylenediaminetetraacetic acid (EDTA), and other unspecified environmentally friendly chemicals.

Compared to conventional acid-based methods, which make use of two-phase liquid–liquid extraction processes, the LAD is said to have no detrimental environmental impact. Traditional techniques, on the other hand, have also difficulties in separating rare-earth metals, due to their high similarities in chemical and physical properties, according to the researchers.

“Collectively, our process chain of technology and feedstocks enables us to help restore the domestic supply chain of these critical materials in the most sustainable and environmentally friendly and beneficial ways ever developed,” said American Resources Corporation CEO, Mark Jensen. “The team at Purdue is an important part of this, and we look forward to pushing aggressively forward with commercialization of the technology and showcasing the low cost and environmentally sensitive technology.”

In 2019, other scientists at the Purdue University developed a process to extract pure carbon from plastic waste and turn it into anode material for lithium-ion batteries.



Hot News / Related to recommend
  • 2023 - 03 - 30
    Click on the number of times: 0
    source:natureAbstractThe world’s largest current Cu resource is volcanic arc-hosted, porphyry copper deposits. Whether unusual parental magmas or fortuitous combinations of processes accompanying empl...
  • 2023 - 03 - 28
    Click on the number of times: 1
    source:designnewsRare earth elements (REEs) are a group of 17 metallic elements that are used in high-tech electronics, electric vehicle motors, defense systems, and other consumer goods, according to...
  • 2023 - 03 - 27
    Click on the number of times: 1
    source:techxploreRare earth elements (REE), a group of 17 metallic elements, are in nearly every piece of technology, including cell phones, televisions, computers and almost every part of a vehicle. ...
  • 2023 - 03 - 24
    Click on the number of times: 1
    source:astrobiologyA new biosensor engineered by Penn State researchers offers scientists the first dynamic glimpses of manganese, an elusive metal ion that is essential for life.The researchers engin...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务