News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Mechanistic Interrogation of a PQQ and Rare Earth-Dependent Artificial Metalloenzyme

The date of: 2025-10-10
viewed: 6

来源:ACS Publications

Pyrroloquinoline quinone (PQQ)-binding proteins are found in diverse species and play key roles in the central metabolism of many methylotrophic bacteria, acting as redox-active cofactors in their alcohol dehydrogenase (ADH) enzymes. These enzymes also require a Lewis acidic metal ion to activate PQQ, and the 2011 discovery of lanthanide (Ln3+)-dependent ADH enzymes sparked a surge of interest in understanding their functional properties. However, key questions remain regarding the mechanism, metal ion-dependence, and electron transport processes of these enzymes. We report mechanistic, structural, and computational studies on an artificial metalloenzyme (ArM) containing a biomimetic active site that binds Ln3+, PQQ, and catalyzes benzyl alcohol dehydrogenation. These studies provide insights into the potential structure–function relationships present in natural MDHs. Examining the relative reactivities of substituted benzyl alcohol substrates revealed a kinetic isotope effect of 2.9 ± 0.4 and a linear free energy relationship consistent with one of the two mechanistic pathways widely proposed to operate in ADHs. Preparing ArMs with metal ions spanning the rare earth series, we observed decreasing reactivity with increasing Lewis acidity, a pattern consistent with that of natural ADH assays. In contrast to patterns observed in natural ADH assays, addition of ammonia had no effect on catalysis. Finally, investigating the role of a conserved active site residue through X-ray diffraction and molecular dynamics simulations, revealed a PQQ/substrate access channel critically regulated by this site. Together, these studies bear new insights into the mechanism, metal ion-dependence, and conformational dynamics associated with PQQ and rare earth-dependent enzymes.



Hot News / Related to recommend
  • 2025 - 11 - 17
    Click on the number of times: 1
    来源:ACS PublicationsThis work reports the fabrication of a novel electrochemical sensor leveraging reduced graphene oxide (rGO) modified with samarium oxide (Sm2O3) nanoparticles to enhance dopamine (D...
  • 2025 - 11 - 14
    Click on the number of times: 0
    Manipulating Local Electron Density of Fe Nanoclusters with Cerium Incorporation to Optimize Adsorption Behavior of N-Related Intermediates for Electrochemical Ammonia Synthesis from Nitrite来源:ACS Pub...
  • 2025 - 11 - 14
    Click on the number of times: 0
    Bi-, Tri- and Tetranuclear Rare Earth Metal Complexes with Arylboronic Acids: Synthesis, Structure, and Photoluminescent Properties来源:ACS PublicationsPolynuclear complexes of rare earth metals Sc, La,...
  • 2025 - 11 - 12
    Click on the number of times: 2
    Ultrathin Single-Helix Rare Earth Nanowires: Inorganic Analogues of RNA Conformation with High Mechanical Flexibility来源:ACS PublicationsChirality has always been fascinating, yet inorganic chiral stru...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务