News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Heat-protective film to reduce solar module temperature by 3.5 degrees Celsius

The date of: 2022-01-05
viewed: 7

source:PV magazine

An international research team has tested a holographic film based on prismatic concentrators that was presented by Russian scientists last year and is claimed to significantly reduce the operating temperature of solar modules, including that of thermal-photovoltaic devices. According to the new findings, the film is able to lower the operating temperature by around 3.5 degrees Celsius.

Scientists from South Ural State University (SUSU), in Russia, announced, in March, they had patented a new technology to prevent PV modules from overheating. The proposed technique consists of a holographic film based on prismatic concentrators known as “prismacons,” which are made of a transparent material containing holographic lenses of very small dimensions. It was claimed, at the time, to significantly reduce the operating temperature of solar panels, including thermal-photovoltaic devices, and to improve PV module efficiency even in cloudy weather.

A few months later, the same scientists, supported by other researchers from the Universiti Malaysia Pahang (UMP) and the Manipal Academy of Higher Education, in India, have developed a thermal model to assess the performance of the novel heat-protective film and decided to unveil more technical details on the film.

The research group explained that the holographic film, which can be simply laminated on the panel surface, works by reflecting the infrared rays from its metallized top layer, which prevents the module from overheating. Its core consists of a layer made with tiny mini pyramids/spectral concentrators that are able to absorb sunlight and refract it before directing it onto the solar cell due to internal reflection, regardless of the angle of incidence.

The technique was tested under standard illumination conditions on a 100W monocrystalline panel mounted with a tilt angle of 45 degrees and located in Qurghonteppa, in Tajikistan. The performance of a reference panel with the same characteristics, and without the holographic film, was also tested for comparison.

The operating temperature of the module with the film was found to be between 32 and 65 degrees Celsius, and that of the panel without the film to range from 35 to 75 degrees Celsius. “The silicon surface temperature reduction is 3.54 Celsius degrees, according to the data analyzed in this work,” the scientists stated. “According to simulation findings, even a small temperature difference of 3.54 Celsius degrees improves electric power generation performance significantly in larger solar systems under hot and warm climatic conditions.”

They explained, once again, that the sputtering of rare earth metals on the upper side of the holographic film is what makes it able to reflect and absorb the infrared radiation from the solar spectrum but they again did not specify which kind of rare earth metals were used.

The holographic film was described in the paper “Thermal model of a photovoltaic module with heat-protective film,” published in Case Studies in Thermal Engineering. Looking forward, the research team said it wants to assess the costs of the new technique and to improve the thermal model to make it suitable to predict more accurately the temperature and power output of PV modules with filters in other climates.

Holographic films are very thin, flexible plastic films that can be laminated onto different types of materials. They can diffract the usable frequencies of sunlight and direct the generated energy toward solar cells. Their application in PV research is not new as several kinds of holographic foils and patterns have already been tested in both PV and CPV devices. However, the technology has not been developed for commercial production thus far.

Hot News / Related to recommend
  • 2023 - 01 - 19
    Click on the number of times: 1
    Deep seabed mining plans pit renewable energy demand against ocean life in a largely unexplored frontier source:themandarinAs companies race to expand renewable energy and the batteries to store ...
  • 2023 - 01 - 18
    Click on the number of times: 2
    source:natureHafnium isn’t a particularly remarkable element. It’s not your explosive sodium, shimmering mercury or stinky sulfur. It’s a greyish metal and is commonly used as a neutron absorber in th...
  • 2023 - 01 - 17
    Click on the number of times: 1
    source:mydrollIt’s “lights out” for antibiotic-resistant superbugs as next-generation light-activated nanotech proves it can eradicate some of the most notorious and potentially deadly bacteria in the...
  • 2023 - 01 - 16
    Click on the number of times: 1
    source:lva.lenovoBasalt is a type of volcanic rock that is formed when lava with a high content of mafic minerals (such as pyroxene and olivine) cools and solidifies. Basalt lava eruptions occur when ...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center