News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

RaRE project creates rare earth magnets from scrap

The date of: 2020-06-06
viewed: 2

source:www.electrive.com

The British research project RaRE has set itself the goal of setting up a continuous supply chain to integrate recycled rare earth magnets into electric vehicles. Bentley is one of the companies involved in the project, which is led by HyProMag, a spin-off from the University of Birmingham.

RaRE stands for Rare-Earth Recycling for E-Machines and is based on a patented process developed at the University of Birmingham for the extraction and demagnetisation of certain alloy powders – especially neodymium-iron-boron (NdFeB). These alloy powders can be extracted from scrap and old equipment. The project now wants to go one step further and for the first time, use the recovered materials to develop new rare earth magnets for electric vehicles.

To this end, five British players are pooling their know-how. In addition to HyProMag and Bentley, the project partners include the automotive specialist Unipart Powertrain Applications, the electronic scrap company Intelligent Lifestyle Solutions and the engine developer Advanced Electric Machines Research. The recycled rare earth magnets are to be installed in auxiliary electric motors developed by Advanced Electric Machines Research according to Bentley’s ideas. Unipart’s task is to design an assembly line for the recycled materials to produce up to 100,000 motor units annually.

A patented process called HPMS (Hydrogen Processing of Magnet Scrap) will be used for extracting and demagnetising neodymium iron boron alloy powders from magnets embedded in scrap and redundant equipment. HyProMag aims to scale up the HPMS process and re-process the product back into new magnetic materials at pilot scale. The pilot should demonstrate the quality of material produced in terms of its magnetic behaviour, mechanical performance and corrosion resistance.

The initiators believe that the recycling of rare earth magnets will play a key role in developing robust supply chains. This field is still mostly untapped. “NdFeB magnets are essential for many future technologies,” emphasises Nick Mann, plant manager at HyProMag.

The British government provides 1.9 million pounds of funding for the project. The project partners are contributing another £700,000.



Hot News / Related to recommend
  • 2025 - 05 - 13
    Click on the number of times: 0
    Combination Diagnostics In Vivo: Dual-Mode Ultrasound/NIR Fluorescence Imaging with Neodymium- and Thulium-Doped Graphene Quantum Dots 来源:ACS PublicationsThe combination of two biomedical imaging...
  • 2025 - 05 - 12
    Click on the number of times: 0
    来源:ACS PublicationsWe report ground states, equilibrium structures, and both electronic and electron paramagnetic resonance (EPR) spectra of divalent rare-earth metallocenes Ln(CpiPr5)2 as obtained fr...
  • 2025 - 05 - 09
    Click on the number of times: 0
    来源:TALANTA OPEN Volume11 DOI10.1016/j.talo.2025.100411Zinc oxide (ZnO) serves as a highly adaptable semiconductor with a crucial role in various applications because of its crystal structure compatibi...
  • 2025 - 05 - 08
    Click on the number of times: 0
    Melting temperature, emissivity, and thermal conductivity of rare-earth silicates for thermal and environmental barrier coatings source:SCRIPTA MATERIALIAIn recent years, rare-earth silicates hav...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务