News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

We've Found a New Source for Rare-Earth Elements We Need for Green Tech

The date of: 2019-03-11
viewed: 12

Source:Popular Mechanics

The viability of a renewable energy future relies on the ready supply of REEs, or rare-earth elements. There are 17 REEs in the periodic table and, though the name suggests otherwise, they are actually plentiful in the earth’s crust. The challenge is that these elements are not often concentrated in ore deposits, which makes them expensive and unreliable as an extractable resource for domestic use or export. This in part explains the shortage of these materials being extracted in the United States.

Two of these rare-earth elements, neodymium (Nd) and dysprosium (Dy), are crucial for the development of solar and wind technologies and electric vehicles, not to mention hard drives, television screens, and modern electronics like the one you may be holding in your hand right now. Yet according to Renewables Consulting Group (RCG), “the use of REEs has faced criticism due to price volatility and political issues surrounding the supply chain.” Add to that the millions of tons of acidic pollution generated by conventional extraction methods, and the renewable energy industry doesn’t look so green anymore.

Enter Paul J. Antonick and Zhichao Hu, members of the thermodynamics team at the Rutgers University School of Engineering, who contest that instead of using harsh chemicals to extract rare-earth elements, mineral and organic acids made by naturally occurring bacteria called Gluconobacter oxydanscould do the job instead.

The researchers used these natural acids along with a bio-acid mixture, or biolixiviant, to extract six rare-earth elements from synthetic phosphogypsum. The results, published in The Journal of Chemical Thermodynamics, showed that “the biolixiviant was more efficient at rare earth element extraction than gluconic acid and phosphoric acid but less efficient than sulfuric acid.”

Phosphogypsum is a waste by-product of phosphoric acid production. A Futurity article about the study states that “Each year, the U.S. mines an estimated 250 million tons of phosphate rock to produce phosphoric acid for fertilizers.” That’s a huge supply of phosphogypsum, representing roughly 100,000 tons of rare-earth elements ready for extraction. Currently, about 126,000 tons of REEs are produced worldwide. Tapping this resource at home would catapult U.S. production closer to China levels, which now account for 90 percent of the market share.

Researchers will soon test their bacteria-based extraction process on industrial phosphogypsum, which is more complex than lab-controlled samples. This is good news for large wind turbine manufacturers that rely on magnet generators made from neodymium and dysprosium, among other rare-earth elements like praseodymium (Pr) and terbium (Tb). Altogether, the use of REEs could result in the more efficient and reliable operation of renewable technologies.

Given the increase in demand for rare-earth metals, the question of how to recycle products made from them is also being considered. “With so many hundreds of thousands of tons of rare earth oxide being produced and manufactured into products each year,” says RCG’s Kerri Hart, “having recycling methods in place is a valuable contribution to keeping the costs of the materials low and maximizing the use of the rare earth elements.”


Hot News / Related to recommend
  • 2024 - 12 - 20
    Click on the number of times: 0
    source: University of LiverpoolThe University of Liverpool has reported a significant advancement in engineering biology and clean energy. A team of researchers has developed an innovative light-drive...
  • 2024 - 12 - 19
    Click on the number of times: 0
    source:SMALL CAPSAxel REE (ASX: AXL) has identified significant gallium mineralisation following a review of auger and diamond drill samples collected from the ongoing Phase One campaign at its flagsh...
  • 2024 - 12 - 18
    Click on the number of times: 2
    source:Helmholtz Association of German Research CentresAnodes for the electrolytic splitting of water are usually iridium-based materials. In order to increase the stability of the iridium catalyst, a...
  • 2024 - 12 - 17
    Click on the number of times: 1
    source:University of CaliforniaScientists at the University of California, Irvine have uncovered the atomic-scale mechanics that enhance superconductivity in an iron-based material, a finding publishe...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务