News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Kanazawa University-led researchers recycle rare-earth elements from spent fluorescent lamps by chem

The date of: 2018-11-08
viewed: 1

Kanazawa University-led researchers recycle rare-earth elements from spent fluorescent lamps by chem



Source:

A team led by Kanazawa University in Japan has developed a cleaner method for the recycling of several rare earths (REs) such as yttrium (Y) and europium (Eu) used as phosphors in fluorescent lamps (FLs).

End-of-life FLs are a potentially huge source of REs, but harsh and polluting processes are needed currently to extract these metals from the spent phosphors. As reported in Waste Management, instead of using acid extractants to dissolve the REs trapped in the spent lamps, the Kanazawa team turned to chelator chemistry.

Chelators—organic compounds containing elements such as N or O—bond to metals through electron donation. This allows them to gently leach out REs from the solid mass of a spent phosphor, without the need for strong acids.

To bolster the extraction rate, the team added a second ingredient to their process: mechano-chemical energy. Planetary ball-milling—i.e., grinding a solid into fine particles between layers of small, hard balls in a rotating chamber—was found to raise the yield of REs when performed during chelator treatment. This is because once milled the greater surface area of the pulverized phosphors provided easier access to the leachable metals within.


Hot News / Related to recommend
  • 2025 - 07 - 18
    Click on the number of times: 0
    来源:ACS PublicationsWater electrolysis has emerged as a promising pathway for sustainable energy production, highlighting the need for innovative nonprecious bimetallic nanocatalysts to enhance overall...
  • 2025 - 07 - 17
    Click on the number of times: 0
    来源:ACS PublicationsThe growth of high-entropy alloy (HEA) thin films using the molecular beam epitaxy (MBE) technique widens our horizons in materials design. This technique offers precise control of ...
  • 2025 - 07 - 16
    Click on the number of times: 0
    来源:ACS PublicationsDeterministic control of the layering configuration of two-dimensional quantum materials plays a central role in studying their emergent electronic properties. Here we demonstrate i...
  • 2025 - 07 - 15
    Click on the number of times: 0
    来源:ACS Publications Designing functional materials is a promising route to enhance modern technologies. Here, an unreported hexagonal perovskite, LuGaO3, is successfully synthesized in thin-film form,...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务