News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Engineering Trap Distribution by Doping Rare Earth

The date of: 2025-04-17
viewed: 2

Engineering Trap Distribution by Doping Rare Earth Ion for Mechanoluminescence Enhancement

 

Mechanoluminescence materials exhibit fascinating optical properties due to their energy harvesting and controllable release capabilities. SrAl2O4:Eu2+ (SAOE) has been extensively studied as a traditional mechanoluminescence material, however, the luminescence intensity enhancement and the luminescence mechanism of its mechanoluminescence remain an unresolved issue, which hinders the development and widespread application of excellent phosphors. Herein, a promising rare earth (Re3+ = Sm3+, Dy3+, Er3+, and Tm3+) doping strategy was proposed to achieve intense strategy was proposed to achieve intense mechanoluminescence of SAOE. By introducing different Re3+ ions to manipulate the energy level positions in SAOE phosphors, the depth and density of electron and hole traps can be tuned, resulting in the maximum mechanoluminescence intensity of SrAl2O4:Eu2+, Tm3+ is about 11-fold higher than that of SAOE. The mechanism governing trap distribution has been unveiled through thermoluminescence glow curve analysis and density functional theory calculations. Our research provides valuable guidance for designing high-performance phosphors and opens up new opportunities for multifunctional applications.




Hot News / Related to recommend
  • 2025 - 09 - 16
    Click on the number of times: 0
    来源:ACS  PublicationsThe wettability of rare earth oxides (REOs) including the lanthanide series, scandium, and yttrium has become a subject of increasing interest and debate. While many studies r...
  • 2025 - 09 - 15
    Click on the number of times: 0
    来源:ACS  PublicationsThe compound Sm3Ge5 adopts two modifications with Pearson symbols hP16 (AlB2-derivative) and oF64 (defect α-ThSi2-type) upon synthesis at ambient pressure. Synthesis at extrem...
  • 2025 - 09 - 12
    Click on the number of times: 0
    Synergistic Coupling of Antenna Effect and Schottky Junction in Tb-Doped Covalent Organic Framework for Enhanced Electrochemiluminescence Sening of Isobutyryl Fentanyl来源:ACS PublicationsRational desig...
  • 2025 - 09 - 10
    Click on the number of times: 0
    来源:ACS PublicationsThe development of a catalyst exhibiting high resistance to SO2 and H2O, while demonstrating superior CO oxidation performance, is of significant importance for specific industrial ...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务