News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

η6-Benzene Tetra-Anion Complexes of Early and Late Rare-Earth Metals

The date of: 2025-03-25
viewed: 0

source:ACS Publications

A novel synthetic route to the triple-decker benzene tetra-anion complexes [(η5-C5iPr5)M(μ:η6:η6-C6H6)M(η5-C5iPr5)] is reported for a range of early and late rare-earth elements, i.e., M = Y, La, Sm, Gd, and Dy (1M). The lanthanum complex 1La is the first benzene tetra-anion complex of the largest rare-earth element. Aromaticity in the 10π-electron benzene ligands is confirmed through crystallographic studies of all compounds and nucleus-independent chemical shift calculations on 1Y and 1La. Analysis of the bonding in 1Y and 1La using density functional theory revealed strong covalency in the metal-benzene interactions, with very similar contributions from the metal 4d/5d orbitals, respectively, and the benzene π* orbitals. Magnetic susceptibility measurements on 1Sm, 1Gd, and 1Dy are also consistent with the presence of a benzene tetra-anion ligand. The origins of the appreciable exchange coupling constant of Jexch = −3.35 cm–1 (−2J formalism) in 1Gd are established through a computational study of the interacting magnetic orbitals. The dynamic magnetic properties of 1Dy are also described. The clear absence of SMM behavior in the dysprosium complex is explained using multireference calculations and an ab initio ligand-field theory description of the 4f orbitals, which clearly show that the benzene tetra-anion ligand provides a dominant equatorial contribution.


Hot News / Related to recommend
  • 2025 - 05 - 08
    Click on the number of times: 0
    Melting temperature, emissivity, and thermal conductivity of rare-earth silicates for thermal and environmental barrier coatings source:SCRIPTA MATERIALIAIn recent years, rare-earth silicates hav...
  • 2025 - 05 - 07
    Click on the number of times: 0
    source:Phys.orgQuantum technologies, which leverage quantum mechanical effects to process information, could outperform their classical counterparts in some complex and advanced tasks. The development...
  • 2025 - 04 - 30
    Click on the number of times: 5
    source:presstvThe pilot plant at the Abbas Abad Industrial Town has been indigenously designed and built by young Iranian experts, he said, hailing it a “great achievement” which will enable the count...
  • 2025 - 04 - 29
    Click on the number of times: 1
    source:Tohoku UniversityA new catalyst structure offers a potential pathway toward more cost-effective hydrogen production via water electrolysis. The material centers on mesoporous single-crystalline...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务