News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

New type of semiconductor nanocrystal overcomes “dark” exciton

The date of: 2024-08-26
viewed: 0
source:Cosmos


Newly discovered semiconductor nanocrystals could be used to develop highly efficient light-emitting devices and lasers.
The nanocrystals are described in a new paper published in the American Chemical Society journal ACS Nano.
Nanocrystals are often used in devices such as lasers or light-emitting diodes (LEDs). These are mainstays of modern technology, so finding more efficient ways of producing these semiconductor elements would mark a major advance in technology development.
One challenge in nanocrystals is the so-called “dark” exciton.
Excitons are essential in semiconductors. They are formed by a negatively charged electron pairing with a positively charged hole (absence of an electron) in the material because an electron has been “excited” out of the crystal structure through gaining more energy – usually from a photon.
The lowest energy, or ground-state excitons in nanocrystals are bad at emitting light, hence the name dark exciton. Dark excitons act like a speed bump, slowing down the emission of light and limiting the performance of nanocrystal-based devices.
“We set out to find new materials in which the exciton ordering is inverted, so that the lowest-energy exciton is bright,” says co-author of the new study John Lyons, a researcher at the US Naval Research Laboratory.
The team first identified 150 target materials for further testing based on theoretical models. Calculations reduced the cohort of possible materials with the desired effects to 28.
More detailed modelling showed at least 4 of the materials can yield bright ground-state excitons. The materials can emit light from infrared to ultraviolet.
The discovery, Lyons says, “could pave the way for the development of ultrabright and highly efficient light-emitting devices, lasers, and other technologies”.



Hot News / Related to recommend
  • 2025 - 09 - 03
    Click on the number of times: 0
    Concentration-Quenching-Suppressed Eu3+-Activated Ba3Lu2B6O15 Orange-Red-Emitting Phosphors via One-Dimensional Structural Confinement for Thermally Stable White LEDs 来源:ACS PublicationsConventio...
  • 2025 - 09 - 02
    Click on the number of times: 0
    Modulating Electrochemical Performance of La2FeNiO6/MWCNT Nanocomposites for Hydrogen Storage Inquiries: Schiff-Base Ligand-Assisted Synthesis and Characterization来源:ACS PublicationsSince the role of ...
  • 2025 - 09 - 01
    Click on the number of times: 0
    来源:ACS PublicationsThe reaction of [LnIII(OArP-κ2O,P)3] (1-Ln, Ln = La, Sm, Y, Yb, and ArPO– = 2,4-tBu2-6-(Ph2P)C6H2O–) with the copper(I) triflate toluene adduct yields the corresponding dinuclear ra...
  • 2025 - 08 - 29
    Click on the number of times: 0
    来源:ACS PublicationsMalonate ligands demonstrate versatility for intercalating metal complexes into layered rare-earth hydroxides (LREHs), enabling controlled tuning of coordination geometry and compos...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务