Surface oxygen functionality controls selective transport
The date of:
2024-07-26
viewed:
0
Surface oxygen functionality controls selective transport of metal ions through graphene oxide membranes
source: Pacific Northwest National LaboratoryDeveloping efficient, selective, and scalable separations for critical materials, including lithium and magnesium, is essential to meeting the increasing demands for clean energy technologies and alleviating challenges with domestic supply chains. Graphene oxide (GO) membranes have shown promise for separating ions from mixed solutions based on size.While previous work used GO membranes for size-based separations, UV light reduction expands the potential uses of GO membranes by altering the separation mechanism. This modification approach allows researchers to tune the functionality of GO membranes via a straightforward method that uses no harsh or specialty chemicals.Scientists discovered that reducing GO membranes with ultraviolet (UV) light alters the oxygen functional groups on the GO surface. This modification results in a different, chromatography-like separation mechanism that is selective for charge rather than size.Larger, doubly charged cations, such as calcium, move through the membranes faster than smaller, singly charged cations such as lithium. The work is published in the Chemical Engineering Journal.The smaller lithium cations permeate more slowly through the UV-rGO membranes than larger cations, such as calcium and magnesium, resulting in a 3- to 4-fold improvement in the separation selectivity between these representative cations.UV exposure selectively removed hydroxyl (–OH) groups from the GO basal planes, leading to enhanced interactions of metal cations with functional groups located at the edges of GO. This resulted in a lower ratio of free mobile lithium in solution compared to calcium cations. A separation mechanism analogous to chromatography is proposed for UV-rGO, emphasizing the crucial role of different oxygen groups on GO in controlling selective ion transport through GO membranes.
Hot News
/
Related to recommend
2025
-
10
-
14
Click on the number of times:
1
Exploring Spin Hall Conductivity and Tunable Magnetoresistance in the Rare-Earth Topological Antiferromagnetic Dirac Semimetal GdCuSn 来源:ACS PublicationsMagnetic topological materials, driven by their...
2025
-
10
-
13
Click on the number of times:
3
来源:ACS PublicationsThe unique physicochemical properties of rare earth elements (REEs) make them imperative for the production and improvement of advanced technology, renewable energy, and national de...
2025
-
10
-
10
Click on the number of times:
3
来源:ACS PublicationsPyrroloquinoline quinone (PQQ)-binding proteins are found in diverse species and play key roles in the central metabolism of many methylotrophic bacteria, acting as redox-active cof...
2025
-
10
-
09
Click on the number of times:
3
来源:ACS PublicationsRare-earth-organic frameworks (REOFs) have been extensively investigated as promising adsorbents for radioactive nuclides, owing to the diverse coordination environments and robust ...