News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Researchers realize selective recovery of high-value rare earth elements from waste NdFeB

The date of: 2023-02-21
viewed: 1

source:phys.org

Recycling high-value rare earth elements from NdFeB waste can save resources, reduce industrial waste, protect the environment and bring considerable economic benefits. However, most traditional recovery methods take a long time to process, have high acid consumption, and low selectivity.

In a study published in Separation and Purification Technology, the research group led by Prof. Yang Fan from Fujian Institute of Research on the Structure of Matter of the Chinese Academy of Sciences proposed a new integrated method for recycling permanent magnet waste by betaine hydrochloride ([Hbet]Cl) solution extraction.

The researchers first carried out leaching experiments on fully roasted magnetic clay samples, and selected [Hbet]Cl as the leaching agent.

They found that when leaching temperature was 200° Celsius, leaching time was eight hours, lixiviant [Hbet]Cl concentration was 0.2 mol/L, and solid–liquid ratio was 1:150 g/ml. They were able to get optimum leaching results of 99.81% Pr, 97.05% Nd, 95.51% Gd, 56.24% Ce and 0.20% Fe, and almost all iron oxide remained in the residue.

Compared with methods for common lixiviants, the results of the proposed method showed a better leaching rate and selectivity. And the leaching sequence was in line with established chemical properties.

In addition, the researchers revealed that the new lixiviant ([Hbet]Cl) will not reduce the extraction rate of rare earth materials by N, N-di-2-ethylhexyl diglycolamic acid (D2EHDGAA) extractant, and the extraction rate of D2EHDGAA for Nd in [Hbet]Cl leaching solution is significantly improved.



Hot News / Related to recommend
  • 2025 - 01 - 02
    Click on the number of times: 0
    source:TOHOKU UNIVERSITYElectrocatalysis is a key technology for sustainable energy, and understanding how catalysts work is crucial for improving their performance. One of the challenges in using pla...
  • 2024 - 12 - 31
    Click on the number of times: 0
    source:Tohoku UniversityAn international group of researchers has developed a novel approach that enhances the efficiency of the oxygen evolution reaction (OER), a key process in renewable energy tech...
  • 2024 - 12 - 30
    Click on the number of times: 0
    source:phys.orgA research team has developed high-performance diamond/ε-Ga2O3 heterojunction pn diodes based on ultrawide bandgap semiconductors, achieving breakdown voltages exceeding 3 kV. This work...
  • 2024 - 12 - 27
    Click on the number of times: 0
    Dinuclear Rare-Earth β-Diketiminates with Bridging 3,5-Ditert-butyl-catecholates: Synthesis, Structure, and Single-Molecule Magnet Properties   source:ACS PublicationsAbstract ImageThe dinuc...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务