News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Deep seabed mining plans pit renewable energy demand

The date of: 2023-01-19
viewed: 1
Deep seabed mining plans pit renewable energy demand against ocean life in a largely unexplored frontier


 

source:themandarin
As companies race to expand renewable energy and the batteries to store it, finding sufficient amounts of rare earth metals to build the technology is no easy feat. That’s leading mining companies to take a closer look at a largely unexplored frontier — the deep ocean seabed.
A wealth of these metals can be found in manganese nodules that look like cobblestones scattered across wide areas of deep ocean seabed. But the fragile ecosystems deep in the oceans are little understood, and the mining codes to sustainably mine these areas are in their infancy.
A fierce debate is now playing out as a Canadian company makes plans to launch the first commercial deep-sea mining operation in the Pacific Ocean.
The Metals Company completed an exploratory project in the Pacific Ocean in autumn of 2022. Under a treaty governing the deep sea floor, the international agency overseeing these areas could be forced to approve provisional mining there as soon as spring 2023, but several countries and companies are urging a delay until more research can be done. France and New Zealand have called for a ban on deep-sea mining.
As scholars who have long focused on the economic, political and legal challenges posed by deep seabed mining, we have each studied and written on this economic frontier with concern for the regulatory and ecological challenges it poses.
What’s down there, and why should we care?
A curious journey began in the summer of 1974. Sailing from Long Beach, California, a revolutionary ship funded by eccentric billionaire Howard Hughes set course for the Pacific to open a new frontier — deep-seabed mining.
Widespread media coverage of the expedition helped to focus the attention of businesses and policymakers on the promise of deep seabed mining, which is notable given that the expedition was actually an elaborate cover for a CIA operation.
The real target was a Soviet ballistic missile submarine that had sunk in 1968 with all hands and what was believed to be a treasure trove of Soviet state secrets and tech onboard.
The expedition, called Project Azorian by the CIA, recovered at least part of the submarine — and it also brought up several manganese nodules from the seafloor.
Manganese nodules are roughly the size of potatoes and can be found across vast areas of seafloor in parts of the Pacific and Indian oceans and deep abyssal plains in the Atlantic. They are valuable because they are exceptionally rich in 37 metals, including nickel, cobalt and copper, which are essential for most large batteries and several renewable energy technologies.
These nodules form over millennia as metals nucleate around shells or broken nodules. The Clarion-Clipperton Zone, between Mexico and Hawaii in the Pacific Ocean, where the mining test took place, has been estimated to have over 21 billion metric tons of nodules that could provide twice as much nickel and three times more cobalt than all the reserves on land.
Mining in the Clarion-Clipperton Zone could be some 10 times richer than comparable mineral deposits on land. All told, estimates place the value of this new industry at some US$30 billion annually by 2030. It could be instrumental in feeding the surging global demand for cobalt that lies at the heart of lithium-ion batteries.
Yet, as several scientists have noted, we still know more about the surface of the moon than what lies at the bottom of the deep seabed.
Deep seabed ecology
Less than 10% of the deep seabed has been mapped thoroughly enough to understand even the basic features of the structure and contents of the ocean floor, let alone the life and ecosystems therein.
Even the most thoroughly studied region, the Clarion-Clipperton Zone, is still best characterized by the persistent novelty of what is found there.
Between 70% and 90% of living things collected in the Clarion-Clipperton Zone have never been seen before, leaving scientists to speculate about what percentage of all living species in the region has never been seen or collected. Exploratory expeditions regularly return with images or samples of creatures that would richly animate science fiction stories, like a 6-foot-long bioluminescent shark.
Also unknown is the impact that deep-sea mining would have on these creatures.
An experiment in 2021 in water about 3 miles (5 kilometres) deep off Mexico found that seabed mining equipment created sediment plumes of up to about 6.5 feet (2 meters) high. But the project authors stressed that they didn’t study the ecological impact. A similar earlier experiment was conducted off Peru in 1989. When scientists returned to that site in 2015, they found some species still hadn’t fully recovered.
Environmentalists have questioned whether seafloor creatures could be smothered by sediment plumes and whether the sediment in the water column could affect island communities that rely on healthy oceanic ecosystems. The Metals Company has argued that its impact is less than terrestrial mining.
Given humanity’s lack of knowledge of the ocean, it is not currently possible to set environmental baselines for oceanic health that could be used to weigh the economic benefits against the environmental harms of seabed mining.
Scarcity and the economic case for mining
The economic case for deep seabed mining reflects both possibility and uncertainty.
On the positive side, it could displace some highly destructive terrestrial mining and augment the global supply of minerals used in clean energy sources such as wind turbines, photovoltaic cells and electric vehicles.
Terrestrial mining imposes significant environmental damage and costs to human health of both the miners themselves and the surrounding communities. Additionally, mines are sometimes located in politically unstable regions. The Democratic Republic of Congo produces 60% of the global supply of cobalt, for example, and China owns or finances 80% of industrial mines in that country. China also accounts for 60% of the global supply of rare earth element production and much of its processing. Having one nation able to exert such control over a critical resource has raised concerns.



Hot News / Related to recommend
  • 2024 - 12 - 20
    Click on the number of times: 0
    source: University of LiverpoolThe University of Liverpool has reported a significant advancement in engineering biology and clean energy. A team of researchers has developed an innovative light-drive...
  • 2024 - 12 - 19
    Click on the number of times: 0
    source:SMALL CAPSAxel REE (ASX: AXL) has identified significant gallium mineralisation following a review of auger and diamond drill samples collected from the ongoing Phase One campaign at its flagsh...
  • 2024 - 12 - 18
    Click on the number of times: 2
    source:Helmholtz Association of German Research CentresAnodes for the electrolytic splitting of water are usually iridium-based materials. In order to increase the stability of the iridium catalyst, a...
  • 2024 - 12 - 17
    Click on the number of times: 1
    source:University of CaliforniaScientists at the University of California, Irvine have uncovered the atomic-scale mechanics that enhance superconductivity in an iron-based material, a finding publishe...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务