News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Energy From Vibrating Micromagnets Power the Wireless Sensors

The date of: 2022-06-15
viewed: 1
Energy From Vibrating Micromagnets Power the Wireless Sensors in the Most Efficient Way


 


source:azom

The Internet of Things, or the wireless interconnection of everyday objects, is based on wireless sensor networks, which require a low but consistent supply of electrical energy. Electromagnetic energy harvesters, which produce energy straightforwardly from the environment, can provide this.

Lise-Marie Lacroix of the Université de Toulouse in France worked with colleagues from Toulouse, Grenoble, and Atlanta, Georgia, to improve the design of one such energy harvester so that it produces electricity as effectively as possible. The European Physical Journal Special Topics has now published this article.

The Internet of Things is made up of a huge number of small, portable devices, each of which requires its own micro-energy source. Batteries are unsuitable for this because they must be replaced or recharged frequently. Instead, a variety of technologies are being taken into account, with electromagnetic energy harvesting being one of the most compelling.

A vibrating plate holds an array of micromagnets facing and coupled with a parallel, static coil in an electromagnetic energy harvester. The vibrating magnets produce electrical energy, and the amount of electricity that can gain entry into a circuit is determined by the design of the coil and magnet, as well as the spacing between them.

Lacroix and her colleagues looked at a system with state-of-the-art NdFeB magnets, which are made of an alloy of the rare earth metal neodymium with iron and boron. They discovered that power could be optimized by balancing the number of turns in the coil with the spacing of the magnets in the array; lowering the distance between the coil and the array and increasing the thickness of the magnets can also help.



Hot News / Related to recommend
  • 2025 - 09 - 17
    Click on the number of times: 0
    来源:ACS PublicationsTransitioning to green energy requires more sustainable rare earth element (REE) production. The current REE supply relies on energy- and chemical-intensive mining, prompting intere...
  • 2025 - 09 - 16
    Click on the number of times: 0
    来源:ACS  PublicationsThe wettability of rare earth oxides (REOs) including the lanthanide series, scandium, and yttrium has become a subject of increasing interest and debate. While many studies r...
  • 2025 - 09 - 15
    Click on the number of times: 0
    来源:ACS  PublicationsThe compound Sm3Ge5 adopts two modifications with Pearson symbols hP16 (AlB2-derivative) and oF64 (defect α-ThSi2-type) upon synthesis at ambient pressure. Synthesis at extrem...
  • 2025 - 09 - 12
    Click on the number of times: 0
    Synergistic Coupling of Antenna Effect and Schottky Junction in Tb-Doped Covalent Organic Framework for Enhanced Electrochemiluminescence Sening of Isobutyryl Fentanyl来源:ACS PublicationsRational desig...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务