Studying the pseudogap in superconducting cuprate materials
The date of:
2022-05-12
viewed:
18
Over three decades since the discovery of high-temperature superconductivity in ceramic cuprate materials, investigating the electronic states in cuprate materials to advance the understanding of the superconducting phase and related phenomena has developed incredible importance.In a new paper published in The European Physical Journal B, Ernesto Raposo from the Federal University of Pernambuco, Brazil, and his co-authors, look at one of the essential physical properties of cuprate superconducting compounds—the pseudogap—which describes a state where the Fermi surface of a material possesses a partial energy gap.Despite impressive progress in the study of cuprate superconducting compounds, the authors point out that researchers have yet to reach a consensus on the physical origin of the pseudogap phase in these compounds.To tackle this problem, the team employs the one-band Hubbard Hamiltonian of interacting neighboring electrons on the CuO2-planes of cuprate systems to examine the emergence of the pseudogap phase.As well as considering the usual on-site Coulomb repulsion energy and hopping of electrons to the nearest neighbor sites, the researchers also considered a competing mechanism of jumps to next-nearest neighbor sites.To conduct their study, the team doped the system either with electrons or holes to approximate the critical doping concentrations at which the pseudogap closes down in addition to estimating the concentration range over which it is sustained.Using a model created to reflect the parameters of the cuprate compound La2CuO4, the team found the critical electron and hole doping concentrations and also obtained the charge-transfer gap and maximum pseudogap energies.The authors say that the pseudogap does not open when the next-nearest-neighboring kinetic energy nullifies, describing this finding as remarkable.The researchers' calculations indicate that the hopping energy to the next-nearest neighbor matches the value of the observed pseudogap in the experimental measure in cuprate systems.This suggests that competing electron hopping along the nodal directions of the sublattice Brillouin zone could play a role in the emergence of the pseudogap phase in cuprate materials.
Hot News
/
Related to recommend
2025
-
11
-
14
Click on the number of times:
0
Manipulating Local Electron Density of Fe Nanoclusters with Cerium Incorporation to Optimize Adsorption Behavior of N-Related Intermediates for Electrochemical Ammonia Synthesis from Nitrite来源:ACS Pub...
2025
-
11
-
14
Click on the number of times:
0
Bi-, Tri- and Tetranuclear Rare Earth Metal Complexes with Arylboronic Acids: Synthesis, Structure, and Photoluminescent Properties来源:ACS PublicationsPolynuclear complexes of rare earth metals Sc, La,...
2025
-
11
-
12
Click on the number of times:
2
Ultrathin Single-Helix Rare Earth Nanowires: Inorganic Analogues of RNA Conformation with High Mechanical Flexibility来源:ACS PublicationsChirality has always been fascinating, yet inorganic chiral stru...
2025
-
11
-
12
Click on the number of times:
4
来源:mining.comJapan and the United States will jointly study developing rare earth mining in the waters around Minamitori Island in the Pacific, Japanese Prime Minister Sanae Takaichi said on Thursday....