source:AZO materials
Overview of MPT
MPT is a recently developed technology that can measure the translation and rotation motion of a particle in an opaque environment. This technique has potential applications in studying the accurate position and three-dimensional (3D) orientation of organs in the human body, such as in capsule endoscopes.
Using this technique, the organs can be functionally examined without any radiation exposure. In pharmaceutical research, this method offers a great opportunity to study remote drug release at any position of the gut. In addition, MPT also has significant applications in diagnostics, imaging, targeting, and therapy owing to its suitable magnetic properties and biocompatibility.
Principles of a MPT System
The MPT technique tracks the magnetic field of a single magnetic tracer, which is measured using anisotropic magnetic resonance (AMR) sensors, and detects the translation and rotation motion of the particle in a completely 3D cylindrical fluidized bed. In MPT, a magnetic source is located according to its field, which is modeled as a dipole; MPT uses a single tracer particle that has a dipole. This allows for the detection of the particle position and orientation.
MPT overcomes the challenges in studying collision detection for particles of arbitrary shape and size. In this technique, magnetic markers are monitored by employing a specially designed permanent magnet aligned by a vertically oriented pulsed magnetic field. This alignment allows monitoring of marker position from the stray field components.
Researchers have monitored marker position as a 3D plot in real-time. The method provides a spatial resolution of better than 10 mm and a temporal resolution of about 1 s, and thus can distinguish between adjacent loops of the gut. This allows for viewing tracers in cells (cell tracking), blood (perfusion), and other functional systems such as drug targeting and drug delivery systems within a living organism. It also offers a wide range of applications in the field of engineering, physics, chemistry, medicine, mathematics, and computer science.
MPT has multiple advantages - it is a safe technique and does not involve any radioactive material or X-rays. It is a highly sensitive method in granular dynamics as it provides translation and rotational information of a particle, which is difficult to obtain using other techniques. It offers high temporal resolution to measure high-speed flow, and it is cost-effective as the magnetometers and sensors are less expensive in comparison to the equipment used in non-optical approaches