News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Scientists developing climate-friendly method to process RE

The date of: 2022-02-22
viewed: 0
Scientists developing climate-friendly method to process ‘rare earth’ minerals; could make U.S. less reliant on foreign metals


 

source:News wise
Newswise — CLEVELAND—A Case Western Reserve scientist is working on a more sustainable way to chemically transform so-called “rare earth” minerals into metals for renewable energy applications.
If successful, the new process could one day help increase American production of the metals, which are now primarily imported from China. Rare earth metals are crucial for making not only wind turbines and electric cars, but also items like smartphones, computer screens and telescopic lenses.
With $1.7 million in support from the U.S. Department of Energy (DOE) and the Critical Materials Institute, Rohan Akolkar, the Milton and Tamar Maltz Professor of Energy Innovation, is developing a high-temperature electrochemical process to convert these  minerals into highly sought-after metals for clean-energy applications.
Akolkar and his team are working on processing a mineral called neodymium, in particular. Neodymium is also expensive, priced at more than $60,000 per metric ton.
“Because neodymium is important in clean-energy applications, electronic devices and electric cars, it is in great demand,” said Akolkar, who is also the Ohio Eminent Scholar in Advance Energy Research at the Case School of Engineering. “We believe that our unique approach to converting domestic neodymium ores into metal will be cheaper, cleaner and far more sustainable than any existing technique.”
Worldwide chase for ‘rare earth’ metals
Akolkar’s research is being conducted amid a global competition to produce greater amounts of rare-earth metals.  
And despite being called “rare,” they are actually fairly common in nature, but are less easily extracted because they aren’t found concentrated in large deposits. Instead, they are dispersed in smaller concentrations and are harder to mine.
Nearly all of the critical rare-earth metals are imported by the United States, according to the U.S. Geological Survey, thus the push to produce them domestically.
In February 2021, President Joe Biden signed an executive order that authorized the defense department to investigate U.S. reliance on foreign imports and a lack of domestic processing of critical minerals—including neodymium.
Collaborative effort on an ‘electrowinning’ proces
Collaborators on the research include the Lawrence Livermore National Laboratory, the Idaho National Laboratory and the Critical Materials Institute. The institute is a DOE Energy Innovation Hub led by Ames Laboratory that seeks to accelerate innovations in critical materials for clean energy.
Akolkar and his team plan to use high-temperature molten salts as the medium in which neodymium metal can be processed. They plan to use a method known as electrowinning, a way of producing a metal by electrochemically reducing its oxide.
Molten salts are highly conductive electrolytes which help lower the electrical energy input to—and cost of—electrowinning, Akolkar said.
Further, his proposed process would eliminate carbon dioxide and perfluorocarbon emissions during the electrowinning, making the process cleaner and more sustainable.
Akolkar’s laboratory in the Chemical and Biomolecular Engineering department at Case Western Reserve has been studying high-temperature electrochemical processes for rare earths recovery for several years.
The work began with a comprehensive study of the fundamental electrochemistry of neodymium in a molten salt about four years ago. Akolkar said that work was vital to the new project because it allowed his team to design the electrowinning process.



Hot News / Related to recommend
  • 2024 - 12 - 20
    Click on the number of times: 0
    source: University of LiverpoolThe University of Liverpool has reported a significant advancement in engineering biology and clean energy. A team of researchers has developed an innovative light-drive...
  • 2024 - 12 - 19
    Click on the number of times: 0
    source:SMALL CAPSAxel REE (ASX: AXL) has identified significant gallium mineralisation following a review of auger and diamond drill samples collected from the ongoing Phase One campaign at its flagsh...
  • 2024 - 12 - 18
    Click on the number of times: 2
    source:Helmholtz Association of German Research CentresAnodes for the electrolytic splitting of water are usually iridium-based materials. In order to increase the stability of the iridium catalyst, a...
  • 2024 - 12 - 17
    Click on the number of times: 1
    source:University of CaliforniaScientists at the University of California, Irvine have uncovered the atomic-scale mechanics that enhance superconductivity in an iron-based material, a finding publishe...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务