Selective Membrane May Cycle Dual-ion Batteries Closer to Reality
The date of:
2022-01-24
viewed:
0
Lithium-ion batteries are relatively safe, long-lasting, fast charging and better for the environment than non-rechargeable batteries-right? Not quite. The rocking-chair mechanism that allows for commercial power storage generally uses rare earth elements, such as nickel and cobalt.Researchers have long been on the hunt for alternative batteries that boast all the benefits of lithium-ion versions but include ecological and economic advantages.Now, a team from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), is closing in on an improved approach. They provided solution to what they call a “notorious issue” that causes the system to malfunction when the battery recharges and discharges, called cycling.Their study was published in Advanced Materials on Dec. 24.Schematic illustration of the EMCco-intercalation behavior comparison in LE (a) or PCME (b) based DIBs. (Image byDual-ion batteries (DIBs) have attracted extensive attention due to their non-transition metal configuration, economy and environmental friendliness. “Practical implementation of DIB technology is nearly stagnant, mainly due to rapid battery failure during high-voltage cycling,” said first author JIANG Hongzhu, doctoral candidate at QIBEBT, CAS.In DIBs, positively and negatively charged ions simultaneously move from the electrolyte-the liquid or film that disperses the ions of a dissolved material and electrically conducts them across a space – to the opposite electrode. The “notorious issue”, according to JIANG, is the solvent used in the electrolyte can insert into the graphite layers of the electrodes due to anion-solvent interactions.“Eventually, this solvent co-intercalation results in graphite exfoliation and pulverization at high potential, especially in the widely used linear carbonate electrolytes,” JIANG said. She also noted that high-voltage cycling can also lead to the oxidation of thermodynamically unstable electrolytes. Previous strategies focusing on enhancing the stability of electrolytes have not effectively addressed the critical issue of solvent co-intercalation.To prevent co-intercalation and electrolyte corrosion, the researchers needed to decouple the negatively charged anions from the solvent. A viable approach is to regulate the anion solvation structure by introducing another component that possesses stronger interaction with anions than carbonate solvents into the electrolyte.Schematic illustration of the EMCco-intercalation behavior comparison in LE (a) or PCME (b) based DIBs. (Image byDual-ion batteries (DIBs) have attracted extensive attention due to their non-transition metal configuration, economy and environmental friendliness. “Practical implementation of DIB technology is nearly stagnant, mainly due to rapid battery failure during high-voltage cycling,” said first author JIANG Hongzhu, doctoral candidate at QIBEBT, CAS.In DIBs, positively and negatively charged ions simultaneously move from the electrolyte-the liquid or film that disperses the ions of a dissolved material and electrically conducts them across a space – to the opposite electrode. The “notorious issue”, according to JIANG, is the solvent used in the electrolyte can insert into the graphite layers of the electrodes due to anion-solvent interactions.“Eventually, this solvent co-intercalation results in graphite exfoliation and pulverization at high potential, especially in the widely used linear carbonate electrolytes,” JIANG said. She also noted that high-voltage cycling can also lead to the oxidation of thermodynamically unstable electrolytes. Previous strategies focusing on enhancing the stability of electrolytes have not effectively addressed the critical issue of solvent co-intercalation.To prevent co-intercalation and electrolyte corrosion, the researchers needed to decouple the negatively charged anions from the solvent. A viable approach is to regulate the anion solvation structure by introducing another component that possesses stronger interaction with anions than carbonate solvents into the electrolyte.
Hot News
/
Related to recommend
2024
-
12
-
20
Click on the number of times:
0
source: University of LiverpoolThe University of Liverpool has reported a significant advancement in engineering biology and clean energy. A team of researchers has developed an innovative light-drive...
2024
-
12
-
19
Click on the number of times:
0
source:SMALL CAPSAxel REE (ASX: AXL) has identified significant gallium mineralisation following a review of auger and diamond drill samples collected from the ongoing Phase One campaign at its flagsh...
2024
-
12
-
18
Click on the number of times:
2
source:Helmholtz Association of German Research CentresAnodes for the electrolytic splitting of water are usually iridium-based materials. In order to increase the stability of the iridium catalyst, a...
2024
-
12
-
17
Click on the number of times:
1
source:University of CaliforniaScientists at the University of California, Irvine have uncovered the atomic-scale mechanics that enhance superconductivity in an iron-based material, a finding publishe...