News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Scientists find efficient way to extract REE from acid mine drainage

The date of: 2020-08-10
viewed: 2

source:Mining.com

Researchers at Penn State University developed a two-stage treatment process for acid mine drainage that enabled them to recover higher concentrations of rare earth elements using smaller amounts of chemicals than previously possible.

In a paper published in the Chemical Engineering Journal, the scientists say that AMD from coal mining operations in Appalachia represents a promising domestic source of REE because it often contains high concentrations of the minerals and because it is already being collected and treated due to environmental concerns.

This residue is produced when pyrite rock — iron sulphide — unearthed by mining activity interacts with water and air and then oxidizes, creating sulfuric acid. The acid then breaks down surrounding rocks, causing toxic metals to dissolve into the water.

Traditional treatment methods involve collecting the AMD in ponds and adding chemicals to neutralize the pH. This causes the dissolved metals to precipitate and settle out of the water. Up to 70% of rare earth elements can be extracted as a sludge using this process, and the rest are released along with the treated water.

What the lead author of the study Behzad Vaziri Hassas and his colleagues found is that they could extract a higher concentration of rare earths and other critical minerals by adding carbon dioxide to the AMD and then bringing it to a neutral pH of 7, the target for environmental remediation.

The way it works is one in which the CO2 produces chemical reactions that result in the formation of solid minerals called carbonates. The rare earth elements bond with the extra carbonates and precipitate out of the water at lower pH values.  

In their article, the researchers report that using this method, 90% of the aluminum was recovered at a pH of 5 and 85% of rare earth elements were recovered by pH 7.

According to them, recovering the same concentration of rare earth elements from AMD using traditional treatment methods would require adding additional chemicals to increase the pH beyond 7. Thus, they believe that by lowering recovery costs, the new treatment method could make the domestic rare-earth-element market more competitive.

“With a simple modification of existing treatment processes, industry could use less chemicals and get more value out of AMD waste,” Mohammad Rezaee, one of the authors of the study, said in a media statement. 



Hot News / Related to recommend
  • 2025 - 09 - 03
    Click on the number of times: 0
    Concentration-Quenching-Suppressed Eu3+-Activated Ba3Lu2B6O15 Orange-Red-Emitting Phosphors via One-Dimensional Structural Confinement for Thermally Stable White LEDs 来源:ACS PublicationsConventio...
  • 2025 - 09 - 02
    Click on the number of times: 0
    Modulating Electrochemical Performance of La2FeNiO6/MWCNT Nanocomposites for Hydrogen Storage Inquiries: Schiff-Base Ligand-Assisted Synthesis and Characterization来源:ACS PublicationsSince the role of ...
  • 2025 - 09 - 01
    Click on the number of times: 0
    来源:ACS PublicationsThe reaction of [LnIII(OArP-κ2O,P)3] (1-Ln, Ln = La, Sm, Y, Yb, and ArPO– = 2,4-tBu2-6-(Ph2P)C6H2O–) with the copper(I) triflate toluene adduct yields the corresponding dinuclear ra...
  • 2025 - 08 - 29
    Click on the number of times: 0
    来源:ACS PublicationsMalonate ligands demonstrate versatility for intercalating metal complexes into layered rare-earth hydroxides (LREHs), enabling controlled tuning of coordination geometry and compos...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务