source:ACS Pubications
Rare-earth adatoms on surfaces have been studied for potential atomic-scale magnetic storage, quantum sensing, and quantum computing applications. Despite accumulating experimental efforts, a comprehensive description of the electronic configurations of the adatoms remains elusive. Here, we investigate two charge states and several electronic configurations, including 5d and 6s valence shells, for a Sm adatom on a MgO substrate using multiconfigurational ab initio methods, for the possibility of using the Sm nuclear spin levels as qubits. For the configurations in a neutral charge state, we find that the electronic ground state is a singlet, and thus the hyperfine interaction associated with the 147Sm nucleus is absent, which may greatly enhance nuclear spin coherence time. The degeneracy of the nuclear levels is lifted by the nuclear quadrupole interaction. We show that the splitting of the nuclear levels can be controlled by a static electric field, and that Rabi oscillations between the nuclear levels can be induced by a time-dependent electric field. For the configurations in a singly charged state, electronic Kramers doublets are formed. The electronic configurations including an unpaired 6s orbital exhibit a strong hyperfine Stark effect due to a large Fermi contact contribution to the hyperfine interaction. In these configurations, electric-field-induced Rabi oscillations between the electronic-nuclear levels can occur at frequencies up to 3 orders of magnitude higher than those for the neutral charge state. The proposed system may be experimentally observed within scanning tunneling microscopy.