Combining APCS-MLR model to evaluate the distribution
The date of:
2024-11-19
viewed:
1
Combining APCS-MLR model to evaluate the distribution and sources of rare earth elements in a large catchment
Rare earth elements (REEs), functioning as indicators for environmental tracking, revealing the impacts of human activities on changes in aquatic ecosystems. However, systematic research on the geochemical characteristics of REEs in large river basins remains relatively scarce. Therefore, this research investigates the geochemical properties of REEs within the Yangtze River basin, analyzing the quantity and spatial distribution of REEs in surface aquatic environments across the upstream, midstream, and downstream segments of the Yangtze River, and quantitatively assessing their sources. Results indicate that the REE concentration in the upstream and downstream areas are significantly higher than in the midstream, with average concentrations of 0.69 μg/L, 0.56 μg/L, and 0.39 μg/L, respectively. REEs in the Yangtze River basin are enriched in light rare earth elements (LREEs), exhibiting a slight negative cerium (Ce) anomaly and a pronounced positive europium (Eu) anomaly. The Ce anomaly correlates with pH levels, and the Eu anomaly is largely attributed to the selective chemical decomposition and solubilization of feldspar minerals. Correlation analysis indicates that REE sources are related to manganese (Mn). Utilizing the Absolute Principal Component Scores-Multiple Linear Regression (APCS-MLR) model, the principal sources of REEs are further determined to be mineral sources (36.80%), industrial sources (45.61%), and mixed sources (17.59%). Further analysis suggests that mining and dissolution of Mn-bearing feldspar minerals, along with the discharge of industrial wastewater, considerably influence REE concentrations in the basin. This study reveals the anthropogenic and natural factors influencing the distribution of REEs in the Yangtze River basin, laying a foundational framework for investigating how human activities affect the dispersion of REEs in aquatic environments.
Hot News
/
Related to recommend
2025
-
04
-
18
Click on the number of times:
0
Fracture characteristics of rare-earth phosphate and silicate environmental barrier coatings under molten CMAS corrosion source:Scientific ReportsThe fracture characteristics of rare-earth phosph...
2025
-
04
-
17
Click on the number of times:
0
Engineering Trap Distribution by Doping Rare Earth Ion for Mechanoluminescence Enhancement Mechanoluminescence materials exhibit fascinating optical properties due to their energy harvesting and ...
2025
-
04
-
16
Click on the number of times:
0
source:Tokyo University of ScienceQuasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an order...
2025
-
04
-
16
Click on the number of times:
0
Rare-Earth Metal Modified Co-Based Catalysts for Highly Selective Hydrogenation of Furfural to 1,5-Pentanediol source:ACS PublicationThe ability to effectively control furan ring opening is the k...