News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Novel recycling process for RE could improve green technology

The date of: 2024-11-07
viewed: 0

Novel recycling process for rare-earth elements could improve green technology and boost carbon neutrality

 


source:Techplore

In a recent study published in Engineering, researchers from Kyoto University have unveiled a novel method for the efficient separation and recycling of rare-earth elements (REEs) from end-of-life magnets. This innovative process, known as the selective extraction–evaporation–electrolysis (SEEE) process, promises to significantly advance recycling technology and support global efforts towards carbon neutrality.

REEs, particularly neodymium (Nd) and dysprosium (Dy), are essential components in high-performance magnets used in various green technologies, including electric vehicles (EVs) and wind turbines. With the surge in demand for these technologies, efficient recycling of these critical materials has become crucial. The new SEEE process addresses this need by offering a highly efficient and environmentally friendly alternative to traditional hydrometallurgical techniques.

The study, led by professor Toshiyuki Nohira and his team at the Institute of Advanced Energy, Kyoto University, explores how this new process can transform the recycling of Nd magnets, which are widely used in energy-efficient technologies. Traditional recycling methods often involve complex and energy-intensive processes with substantial environmental impact. In contrast, the SEEE process is designed to be more sustainable and precise.

The SEEE process involves three key stages:

Selective extraction: Using a molten salt mixture, including calcium chloride (CaCl2) and magnesium chloride (MgCl2), the process extracts REEs from magnet scraps. The addition of calcium fluoride (CaF2) helps to control evaporation losses and improve extraction efficiency.

Selective evaporation: The process then removes any remaining extraction agents and byproducts, concentrating the REEs.

Selective electrolysis: Finally, the extracted REEs are separated electrochemically based on their different formation potentials. This step enables the recovery of high-purity Nd and Dy metals.

The results of this study are promising. The SEEE process achieved recovery rates of 96% for Nd and 91% for Dy, with both metals reaching purities exceeding 90%. This level of efficiency and precision in separating and recycling these critical elements is a significant advancement over current methods.

The implications of this research are far-reaching. As the demand for electric vehicles and renewable energy sources continues to grow, so does the need for effective recycling solutions. The SEEE process could play a pivotal role in ensuring a stable supply of REEs while reducing dependency on new mining activities, which often have significant environmental costs.

Furthermore, the SEEE process is not limited to recycling Nd magnets. The researchers believe that it could be adapted for other applications, such as the reprocessing of nuclear fuels, expanding its potential impact across different sectors.

While the SEEE process has demonstrated considerable potential, the researchers acknowledge that further technical investigations are needed to fully integrate it into industrial applications. Nevertheless, the initial results mark a significant step forward in the field of material recycling and environmental sustainability.

The study highlights the critical role of advanced research in developing solutions that align with global environmental goals. As the world moves towards a more sustainable future, innovations like the SEEE process are essential in overcoming the challenges associated with REE recycling and supporting the broader transition to carbon-neutral technologies.


Hot News / Related to recommend
  • 2024 - 11 - 12
    Click on the number of times: 0
    source:MiningWe take a look at neodymium, a not-so-rare rare earth mineral vital in the production of powerful permanent magnets, lasers and aerospace alloysWhat is Neodymium?Neodymium is a rare earth...
  • 2024 - 11 - 11
    Click on the number of times: 0
    source:Australian Institute for Bioengineering and NanotechnologyThese jars are full of toxic red mud – a waste material produced by the tonne at mining sites across Australia. In this form, it’s...
  • 2024 - 11 - 08
    Click on the number of times: 0
    Stoichiometric Lanthanide Compounds with Diglycolamides: A Synthetic Approach toward Understanding Rare-Earth Speciation in Solutionsource:ACS PublicationsA fundamental understanding of coordination c...
  • 2024 - 11 - 07
    Click on the number of times: 0
    Novel recycling process for rare-earth elements could improve green technology and boost carbon neutrality source:TechploreIn a recent study published in Engineering, researchers from Kyoto Unive...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务