News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Effective new catalyst brings hope for cleaner energy, wastewater treatment, and green chemistry

The date of: 2024-08-14
viewed: 0
source:Hokkaido University


A catalyst that significantly enhances ammonia conversion could improve wastewater treatment, green chemical and hydrogen production.
A team of scientists have developed an effective catalyst with a remarkable ability to enhance the efficiency of ammonia conversion. Published in Advanced Energy Materials, the study reveals the catalyst's potential to significantly advance wastewater treatment, green nitrite and nitrate, as well as hydrogen production.
Catalysts are substances that speed up chemical reactions by providing a more efficient route for a reaction to occur and making it easier to start and finish. Since catalysts are neither consumed nor altered in the reaction, they can be used repeatedly, and they are essential in a variety of industrial, environmental, and biochemical processes.
The team, which included researchers from Japan's Hokkaido University, Australia's University of Technology Sydney and elsewhere, developed the catalyst, called NiOOH-Ni, by combining nickel (Ni) with nickel oxyhydroxide.
Ammonia can cause severe environmental problems, such as excessive algal growth in water bodies, which depletes oxygen and harms aquatic life. At high concentrations, ammonia can harm humans and wildlife. Effective management and conversion of ammonia are thus critical, but its corrosive nature makes it difficult to handle.
The researchers developed NiOOH-Ni using an electrochemical process. Nickel foam, a porous material, was treated with an electrical current while immersed in a chemical solution.
This treatment resulted in the formation of nickel oxyhydroxide particles on the foam's surface. Despite their irregular and non-crystalline structure, these nickel-oxygen particles significantly enhance ammonia conversion efficiency.
The catalyst's design allows it to operate effectively at lower voltages and higher currents than traditional catalysts.
"NiOOH-Ni works better than Ni foam, and the reaction pathway depends on the amount of electricity (voltage) used," explains Professor Zhenguo Huang from the University of Technology Sydney, who led the study. "At lower voltages, NiOOH-Ni produces nitrite, while at higher voltages, it generates nitrate."
This means the catalyst can be used in different ways depending on what is needed. For example, it can be used to clean wastewater by converting ammonia into less harmful substances. But in another process, it can also be used to produce hydrogen gas, a clean fuel. This flexibility makes NiOOH-Ni valuable for various applications.
"NiOOH-Ni is impressively durable and stable, and it works well even after being used multiple times," says Associate Professor Andrey Lyalin from Hokkaido University, who was involved in the study. "This makes it a great alternative to traditional, more expensive catalysts like platinum, which aren't as effective at converting ammonia."
The catalyst's long-term reliability makes it suitable for large-scale industrial use, potentially transforming how industries handle wastewater and produce clean energy.



Hot News / Related to recommend
  • 2024 - 12 - 20
    Click on the number of times: 0
    source: University of LiverpoolThe University of Liverpool has reported a significant advancement in engineering biology and clean energy. A team of researchers has developed an innovative light-drive...
  • 2024 - 12 - 19
    Click on the number of times: 0
    source:SMALL CAPSAxel REE (ASX: AXL) has identified significant gallium mineralisation following a review of auger and diamond drill samples collected from the ongoing Phase One campaign at its flagsh...
  • 2024 - 12 - 18
    Click on the number of times: 2
    source:Helmholtz Association of German Research CentresAnodes for the electrolytic splitting of water are usually iridium-based materials. In order to increase the stability of the iridium catalyst, a...
  • 2024 - 12 - 17
    Click on the number of times: 1
    source:University of CaliforniaScientists at the University of California, Irvine have uncovered the atomic-scale mechanics that enhance superconductivity in an iron-based material, a finding publishe...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务