Surface oxygen functionality controls selective transport
The date of:
2024-07-26
viewed:
0
Surface oxygen functionality controls selective transport of metal ions through graphene oxide membranes
source: Pacific Northwest National LaboratoryDeveloping efficient, selective, and scalable separations for critical materials, including lithium and magnesium, is essential to meeting the increasing demands for clean energy technologies and alleviating challenges with domestic supply chains. Graphene oxide (GO) membranes have shown promise for separating ions from mixed solutions based on size.While previous work used GO membranes for size-based separations, UV light reduction expands the potential uses of GO membranes by altering the separation mechanism. This modification approach allows researchers to tune the functionality of GO membranes via a straightforward method that uses no harsh or specialty chemicals.Scientists discovered that reducing GO membranes with ultraviolet (UV) light alters the oxygen functional groups on the GO surface. This modification results in a different, chromatography-like separation mechanism that is selective for charge rather than size.Larger, doubly charged cations, such as calcium, move through the membranes faster than smaller, singly charged cations such as lithium. The work is published in the Chemical Engineering Journal.The smaller lithium cations permeate more slowly through the UV-rGO membranes than larger cations, such as calcium and magnesium, resulting in a 3- to 4-fold improvement in the separation selectivity between these representative cations.UV exposure selectively removed hydroxyl (–OH) groups from the GO basal planes, leading to enhanced interactions of metal cations with functional groups located at the edges of GO. This resulted in a lower ratio of free mobile lithium in solution compared to calcium cations. A separation mechanism analogous to chromatography is proposed for UV-rGO, emphasizing the crucial role of different oxygen groups on GO in controlling selective ion transport through GO membranes.
Hot News
/
Related to recommend
2025
-
09
-
18
Click on the number of times:
0
来源:ACS PublicationsThe rising demand for Rare Earth Elements (REEs) highlights the need for sustainable cost-effective extraction methods, particularly from secondary sources, such as coal-related mat...
2025
-
09
-
17
Click on the number of times:
0
来源:ACS PublicationsTransitioning to green energy requires more sustainable rare earth element (REE) production. The current REE supply relies on energy- and chemical-intensive mining, prompting intere...
2025
-
09
-
16
Click on the number of times:
0
来源:ACS PublicationsThe wettability of rare earth oxides (REOs) including the lanthanide series, scandium, and yttrium has become a subject of increasing interest and debate. While many studies r...
2025
-
09
-
15
Click on the number of times:
0
来源:ACS PublicationsThe compound Sm3Ge5 adopts two modifications with Pearson symbols hP16 (AlB2-derivative) and oF64 (defect α-ThSi2-type) upon synthesis at ambient pressure. Synthesis at extrem...