News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Surface oxygen functionality controls selective transport

The date of: 2024-07-26
viewed: 0
Surface oxygen functionality controls selective transport of metal ions through graphene oxide membranes




source: Pacific Northwest National Laboratory
Developing efficient, selective, and scalable separations for critical materials, including lithium and magnesium, is essential to meeting the increasing demands for clean energy technologies and alleviating challenges with domestic supply chains. Graphene oxide (GO) membranes have shown promise for separating ions from mixed solutions based on size.
While previous work used GO membranes for size-based separations, UV light reduction expands the potential uses of GO membranes by altering the separation mechanism. This modification approach allows researchers to tune the functionality of GO membranes via a straightforward method that uses no harsh or specialty chemicals.
Scientists discovered that reducing GO membranes with ultraviolet (UV) light alters the oxygen functional groups on the GO surface. This modification results in a different, chromatography-like separation mechanism that is selective for charge rather than size.
Larger, doubly charged cations, such as calcium, move through the membranes faster than smaller, singly charged cations such as lithium. The work is published in the Chemical Engineering Journal.
The smaller lithium cations permeate more slowly through the UV-rGO membranes than larger cations, such as calcium and magnesium, resulting in a 3- to 4-fold improvement in the separation selectivity between these representative cations.
UV exposure selectively removed hydroxyl (–OH) groups from the GO basal planes, leading to enhanced interactions of metal cations with functional groups located at the edges of GO. This resulted in a lower ratio of free mobile lithium in solution compared to calcium cations. A separation mechanism analogous to chromatography is proposed for UV-rGO, emphasizing the crucial role of different oxygen groups on GO in controlling selective ion transport through GO membranes.



Hot News / Related to recommend
  • 2025 - 04 - 25
    Click on the number of times: 0
    source:ACS PubicationsRare-earth adatoms on surfaces have been studied for potential atomic-scale magnetic storage, quantum sensing, and quantum computing applications. Despite accumulating experiment...
  • 2025 - 04 - 24
    Click on the number of times: 0
    source:National Research University Higher School of EconomicsResearchers at HSE University and the Institute of Petrochemical Synthesis of the Russian Academy of Sciences have discovered a way to con...
  • 2025 - 04 - 23
    Click on the number of times: 0
    source:msnWestern Digital says it's created an initiative to retrieve rare earth metals from hard drives that are being cycled out of data centers.The tech company, best known for its digital stor...
  • 2025 - 04 - 22
    Click on the number of times: 0
    source:TRELLISMicrosoft is expanding electronic waste collection from its data centers with a new initiative to recover rare earth elements and precious metals from hard drives without using acids.The...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务