News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Quantum chemistry and simulation help characterize coordination complex of elusive element 61

The date of: 2024-06-13
viewed: 2
source: Oak Ridge National Laboratory


When element 61, also known as promethium, was first isolated by scientists at the Department of Energy's Oak Ridge National Laboratory in 1945, it completed the series of chemical elements known as lanthanides. However, aspects of the element's exact chemical nature have remained a mystery until last year, when a team of scientists from ORNL and the National Institute of Standards and Technology used a combination of experimentation and computer simulation to purify the promethium radionuclide and synthesize a coordination complex that was characterized for the first time. The results of their work were recently published in Nature.
Promethium is one of 15 lanthanides, also known as rare earth elements. Despite being called "rare," many of these elements are extensively used in modern technology, including electric motors, spacecraft batteries and radiation therapy, as well as smart phones and computer monitors.
Though scientists have known about promethium for nearly 80 years, it was the only remaining lanthanide to be characterized in the bound form—essential for identifying an element's electronic structure and properties. This was because radioactive promethium is particularly elusive in nature due to its short half-life (the time it takes for one half of the nuclei in a given amount of a radioactive element to decay) of only 2.5 years.
"This is fundamental research," said Dmytro Bykov, a theoretical chemist and group leader for Advanced Computing for Chemistry and Materials at ORNL who co-led the computational spectroscopy simulation of the promethium complex with Santanu Roy, also of ORNL. "Since the discovery of the periodic law, we have had a good understanding of all the elements, but that doesn't change the fact that you need to experiment to confirm that understanding. It was nice to find this final puzzle piece."
The experimental investigation of promethium included developing a novel, water-soluble complexing agent and using X-ray absorption spectroscopy to determine the electronic structure of the element. However, there are pieces of the picture that experimentation can't easily show, so it was combined with theoretical and computational chemistry to paint a fuller image of promethium.
The team modeled the element using the IBM AC922 supercomputer Summit, located at the Oak Ridge Leadership Computing Facility at ORNL. They were awarded time on the supercomputer through the Director's Discretionary Program. The OLCF is a Department of Energy Office of Science user facility.
"This is experimental science, so the most important thing is that the team purified and characterized the element in the bound form. But the cherry on top is that we were able to run these simulations for a deeper understanding of the experimental observations," Bykov said.
Simulating promethium's electronic structure presented its own challenges and required solving complex equations to model the element's electrons. The simplified visualization of atomic structure seen in most textbooks shows a nucleus of protons and neutrons orbited by electrons on fixed paths. In reality, electrons are quantum objects whose behavior is more similar to a wave, and their exact position at any given moment is a matter of probability. The key to simulating promethium's structure was solving the Schrödinger equation.
Solving the equation describes the wavefunctions and energies of electrons in an atom or molecule in the same way a simple wave equation describes the vibration of a plucked guitar string. Scientists then use this information and observations from spectroscopy to represent the atom or molecule in 3D. The simulations of the element build a more comprehensive picture than can be created with an or the experiment alone.
"Most of the time in an experiment, you can't measure everything. You have a specific set of conditions, and the experiment is a snapshot. In the computer, we can change the conditions and get a deeper understanding of the element's properties," Bykov said.
"We all stand on the shoulders of giants," Bykov continued. "A lot of knowledge we had already, and there was so much work done at this lab. Summit, this marvelous machine, was built by very smart engineers and technicians. And it all came together to characterize and fully understand this remarkable compound of this very rare element for the first time."



Hot News / Related to recommend
  • 2025 - 04 - 18
    Click on the number of times: 0
    Fracture characteristics of rare-earth phosphate and silicate environmental barrier coatings under molten CMAS corrosion source:Scientific ReportsThe fracture characteristics of rare-earth phosph...
  • 2025 - 04 - 17
    Click on the number of times: 0
    Engineering Trap Distribution by Doping Rare Earth Ion for Mechanoluminescence Enhancement Mechanoluminescence materials exhibit fascinating optical properties due to their energy harvesting and ...
  • 2025 - 04 - 16
    Click on the number of times: 0
    source:Tokyo University of ScienceQuasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an order...
  • 2025 - 04 - 16
    Click on the number of times: 0
    Rare-Earth Metal Modified Co-Based Catalysts for Highly Selective Hydrogenation of Furfural to 1,5-Pentanediol source:ACS PublicationThe ability to effectively control furan ring opening is the k...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务