News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

“Tug of war” tactic enhances chemical separations for critical materials

The date of: 2024-04-09
viewed: 0

source:Eurekalert


The Science

The metals called lanthanides have valuable properties for clean energy technologies such as electric vehicles and wind turbines and for many other applications. These elements include several critical materials. In nature, lanthanides are often found mixed together. Industry must separate them to take advantage of their individual properties. But conventional approaches to this separation are time consuming and costly and generate waste. Scientists have developed an efficient new method that can be tailored to select specific lanthanides. The technique combines two substances. One is water-loving and catches lighter lanthanides, while the other prefers oil and grabs heavier lanthanides.

The Impact

Blending an oil-loving and a water-loving compound together to pull specific valuable elements from a chemical mixture is feasible on an industrial scale. Scaled up, the process would allow for smaller equipment, less use of chemicals, and less waste production. This would make the new process more efficient and environmentally friendly than conventional methods.

Summary

The most challenging and expensive aspect of making pure rare earth materials — the 14 lanthanides as well as yttrium and scandium — for clean energy technologies is separating individual rare earth elements from one another. Scientists from Oak Ridge National Laboratory combined two types of organic substances: one water loving, and the other oil loving. These organic substances have preferences for different rare earth elements. For instance, one interacts strongly with the lighter rare earth elements, while the other prefers the heavier ones.

The scientists tested this technique using two different liquids that do not mix — oil and water. In water, they dissolved the water-loving substance; in oil, they added the oil-loving one. They found that the two-substance approach helped separate the lightest and heaviest rare earth elements better than the one-substance method applied previously. They used various methods to study how these organic chemicals and rare earth elements interact. The outcome was valuable information about how the process works and insights concerning how the separation system could be further improved.

Funding

This work was supported by the Department of Energy Office of Science, Office of Basic Energy Sciences, Separation Science program and Materials Chemistry program.


Hot News / Related to recommend
  • 2025 - 09 - 18
    Click on the number of times: 0
    来源:ACS PublicationsThe rising demand for Rare Earth Elements (REEs) highlights the need for sustainable cost-effective extraction methods, particularly from secondary sources, such as coal-related mat...
  • 2025 - 09 - 17
    Click on the number of times: 0
    来源:ACS PublicationsTransitioning to green energy requires more sustainable rare earth element (REE) production. The current REE supply relies on energy- and chemical-intensive mining, prompting intere...
  • 2025 - 09 - 16
    Click on the number of times: 0
    来源:ACS  PublicationsThe wettability of rare earth oxides (REOs) including the lanthanide series, scandium, and yttrium has become a subject of increasing interest and debate. While many studies r...
  • 2025 - 09 - 15
    Click on the number of times: 0
    来源:ACS  PublicationsThe compound Sm3Ge5 adopts two modifications with Pearson symbols hP16 (AlB2-derivative) and oF64 (defect α-ThSi2-type) upon synthesis at ambient pressure. Synthesis at extrem...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务