News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

University team is studying ways to purify rare earth elements

The date of: 2024-02-23
viewed: 0
University team is studying ways to purify rare earth elements necessary for smart phones and other technological devices





source:NEVADA Today

Smart phones. Permanent magnets. Guidance systems. Lasers. Medical imaging.

Many of the high-tech tools we use in our everyday lives rely on rare earth elements due to their desirable magnetic, luminescent and electrical properties. With the demand for rare earths at an all-time high, being able to efficiently extract and process them is of high importance to manufacturers.

Enter Chemical & Materials Engineering (CME) Associate Professor David Cantu, CME Assistant Professor Maryam Raeeszadeh-Sarmazdeh and Chemistry Professor Ana de Bettencourt-Dias.

Led by Cantu, this research team recently received a $600,000 grant from the U.S. Department of Energy to identify extractants that bind to specific rare-earth elements, allowing them to be efficiently separated from one another.

The team, whose expertise combines a wide range of skills such as peptide engineering, spectroscopy, and molecular simulation techniques, is using peptides — strings of amino acids — to bind to specific lanthanide elements (lanthanides comprise 15 of the 17 elements classified as rare-earth).

“Purifying rare earths is challenging because multiple lanthanides are typically found in naturally-occurring ores,” Cantu said. “Current extractants do a poor job separating particular lanthanide ions from other lanthanide ions, making lanthanide purification very costly and environmentally unfriendly.”

“Identifying an extractant that binds specific lanthanide ions would make lanthanide purification less energy- and solvent-intensive, significantly reducing its environmental impact,” Cantu added. “This would mean that all the purification processes of rare earths could be done in the U.S.”



Hot News / Related to recommend
  • 2025 - 04 - 18
    Click on the number of times: 0
    Fracture characteristics of rare-earth phosphate and silicate environmental barrier coatings under molten CMAS corrosion source:Scientific ReportsThe fracture characteristics of rare-earth phosph...
  • 2025 - 04 - 17
    Click on the number of times: 0
    Engineering Trap Distribution by Doping Rare Earth Ion for Mechanoluminescence Enhancement Mechanoluminescence materials exhibit fascinating optical properties due to their energy harvesting and ...
  • 2025 - 04 - 16
    Click on the number of times: 0
    source:Tokyo University of ScienceQuasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an order...
  • 2025 - 04 - 16
    Click on the number of times: 0
    Rare-Earth Metal Modified Co-Based Catalysts for Highly Selective Hydrogenation of Furfural to 1,5-Pentanediol source:ACS PublicationThe ability to effectively control furan ring opening is the k...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务