News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

New Methods to Synthesize Rare Meteoritic Mineral Tetrataenite May Solve the Rare Earth Element Cris

The date of: 2022-11-17
viewed: 2
source:.lpi.usra


Meteorites and asteroids fascinate planetary scientists because they represent the building blocks of the planets and offer unique insights into the earliest moments of our solar system. Meteorites can be identified as such due to unique chemical signatures, and some types (iron meteorites) show beautiful textures called Widmanstätten patterns, which could only form over millions of years. Moreover, these extraterrestrial materials are important for their potential as in-situ resources for space exploration and industrialization, with the most attention given to water (important for habitability, human exploration, and rocket fuel) and rare earth elements (important for magnets used in electronics) that concentrate in sulfide minerals. A recent intersection of science and engineering has come to the forefront through new methods to synthesize tetrataenite, an iron-nickel alloy found in small quantities in iron meteorites, with a uniquely ordered structure giving it magnetic properties on par with rare earth element magnets.
A new study by Yurii Ivanov and colleagues from the University of Cambridge and a U.S. patent approved for Laura Lewis and colleagues from Northeastern University describe new methods for accelerated production of tetrataenite. The method of Ivanov and colleagues depends on the presence of phosphorus, allowing the tetrataenite structure to form in seconds rather than millions of years. Lewis uses a process in a furnace that induces melting, cooling, and magnetism. In both cases, the discovery of synthetic and potentially mass-producible tetrataenite is exciting because it can be used to make permanent magnets for all but the most demanding pieces of electronics (reducing dependence on China’s multi-billion rare earth element monopoly) and may even cause planetary scientists to rethink how slowly iron meteorites cooled. READ MORE: Direct Formation of Hard-Magnetic Tetrataenite in Bulk Alloy Castings and Researchers May Have Just Solved the Rare Earths Crisis.



Hot News / Related to recommend
  • 2025 - 05 - 22
    Click on the number of times: 0
    来源:ACS PublicationsOptically addressable spin impurities in crystals along with device engineering provide an attractive route to realizing quantum technologies in the solid state, but reconciling dis...
  • 2025 - 05 - 21
    Click on the number of times: 1
    Dynamic Competition between Hubbard and Superexchange Interactions Selectively Localizes Electrons and Holes through Polarons 来源:ACS PublicationsControlling the effects of photoexcited polarons i...
  • 2025 - 05 - 21
    Click on the number of times: 0
    Tetracyanidoborates of Divalent Eu and Yb 3D Metal–Organic Frameworks with Cubic Structure. Thermochromic Luminescence and Slow Relaxation of Magnetization of Eu[B(CN)4]2Click to copy article link...
  • 2025 - 05 - 19
    Click on the number of times: 0
    Metastable Ag–Ln–S Nanocrystals with Ordered Cations and Vacancies Form through Structure-Templating Ag2S Intermediate 来源:ACS PublicationsRare-earth chalcogenides have unusual crystal chemistry a...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务