News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai

Rare Mineral from Martian Crater was Created in Explosive

The date of: 2022-07-28
viewed: 3

Rare Mineral from Martian Crater was Created in Explosive Volcanic Eruption Over 3 Billion Years Ago


source:sci-news


Tridymite is a high-temperature, low-pressure form of quartz that is extremely rare on Earth, and it wasn’t clear how a chunk of it ended up in Gale Crater on Mars, the home of NASA’s Curiosity rover.
Gale Crater, which is at least 3.8 billion years old, was chosen as Curiosity’s landing site due to the likelihood that it once held liquid water, and the rover found evidence that confirmed Gale Crater was a lake as recently as 1 billion years ago.
In July 2015, Curiosity drilled into a rock at the ‘Buckskin’ target location in Gale Crater, producing rock powder.
The X-ray diffraction analysis of the sample inside the rover’s Chemistry and Mineralogy (CheMin) instrument revealed the presence of a silica-containing mineral known as tridymite.
“The discovery of tridymite in a mudstone in Gale Crater is one of the most surprising observations that the Curiosity rover has made in 10 years of exploring Mars,” said Dr. Kirsten Siebach, a researcher in the Department of Earth, Environmental, and Planetary Sciences at Rice University.
“Tridymite is usually associated with quartz-forming, explosive, evolved volcanic systems on Earth, but we found it in the bottom of an ancient lake on Mars, where most of the volcanoes are very primitive.”
In the study, Dr. Siebach and colleagues reevaluated data from every reported find of tridymite on Earth.
They also reviewed volcanic materials from models of Mars volcanism and reexamined sedimentary evidence from the Gale Crater lake.
They then came up with a new scenario that matched all the evidence: Martian magma sat for longer than usual in a chamber below a volcano, undergoing a process of partial cooling called fractional crystallization that concentrated silicon.
In a massive eruption, the volcano spewed ash containing the extra silicon in the form of tridymite into the Gale Crater lake and surrounding rivers.
Water helped break down the ash through natural processes of chemical weathering, and water also helped sort the minerals produced by weathering.
The scenario would have concentrated tridymite, producing minerals consistent with the find.
It would also explain other geochemical evidence Curiosity found in the sample, including opaline silicates and reduced concentrations of aluminum oxide.
“It’s actually a straightforward evolution of other volcanic rocks we found in the crater,” Dr. Siebach said.
“We argue that because we only saw this mineral once, and it was highly concentrated in a single layer, the volcano probably erupted at the same time the lake was there.”
“Although the specific sample we analyzed was not exclusively volcanic ash, it was ash that had been weathered and sorted by water.”
If a volcanic eruption like the one in the scenario did occur when Gale Crater contained a lake, it would mean explosive volcanism occurred more than 3 billion years ago, while Mars was transitioning from a wetter and perhaps warmer world to the dry and barren planet it is today.
“There’s ample evidence of basaltic volcanic eruptions on Mars, but this is a more evolved chemistry,” Dr. Siebach said.
“This work suggests that Mars may have a more complex and intriguing volcanic history than we would have imagined before Curiosity.”



Hot News / Related to recommend
  • 2025 - 01 - 02
    Click on the number of times: 0
    source:TOHOKU UNIVERSITYElectrocatalysis is a key technology for sustainable energy, and understanding how catalysts work is crucial for improving their performance. One of the challenges in using pla...
  • 2024 - 12 - 31
    Click on the number of times: 0
    source:Tohoku UniversityAn international group of researchers has developed a novel approach that enhances the efficiency of the oxygen evolution reaction (OER), a key process in renewable energy tech...
  • 2024 - 12 - 30
    Click on the number of times: 0
    source:phys.orgA research team has developed high-performance diamond/ε-Ga2O3 heterojunction pn diodes based on ultrawide bandgap semiconductors, achieving breakdown voltages exceeding 3 kV. This work...
  • 2024 - 12 - 27
    Click on the number of times: 0
    Dinuclear Rare-Earth β-Diketiminates with Bridging 3,5-Ditert-butyl-catecholates: Synthesis, Structure, and Single-Molecule Magnet Properties   source:ACS PublicationsAbstract ImageThe dinuc...
  • Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
    the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
    犀牛云提供云计算服务