Nacre-mimetic cerium-doped nano-hydroxyapatite
The date of:
2022-05-17
viewed:
2
Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration via OPG/RANKL signaling pathway
Background: There has been a major burden in diseases associated with critical bone defects. Despite many techniques for defect management has come into use, the common treatment remains controversial. Mollusk nacre is a natural structure with outstanding mechanical property due to its notable “brick-and-mortar” architecture. Combining inorganic brick with organic mortar, natural nacre displays remarkable tensile strength and fracture toughness. Rare elements have exhibited extraordinary promotive capacities in various aspects of physiological process. Cerium ions have been reported with prospective capacities in promoting bone regeneration in many studies. Herein, inspired by the nacre architecture, our team designed and fabricated a nacre-mimetic cerium-doped layered nano-hydroxyapatite/chitosan layered composite scaffold (CeHA/CS). The scaffold displayed a distinct layered HA/CS composite structure with intervals ranging from 50 to 200 μm, which provided compatible environments for the adhesion and proliferation of human bone marrow mesenchymal stem cells (hBMSCs), allowed the in situ growth of newly formed bone tissues. In vitro, The CeHA/CS layered composite scaffolds noticeably promoted the osteogenic process through the upregulated expressions of osteogenesis-related genes like RUNX2, and COL1 by the BMP-2/P-Smad1/5 signal pathway. And simultaneously, the layered scaffolds inhibited osteoclast differentiation evidenced by the reduced TRAP positive osteoclasts and lowered bone resorption. In vivo, calvarial defected rats revealed that the layered CeHA/CS scaffolds remarkably accelerated bone regeneration at the defect site and immunofluorescence suggested the layered CeHA/CS scaffolds lowered RANKL/OPG ratio. Our results showed that CeHA/CS scaffolds may become a promising platform for bone regeneration in critical defect management by promoting osteogenesis and inhibiting osteoclast activation.
Hot News
/
Related to recommend
2025
-
04
-
18
Click on the number of times:
0
Fracture characteristics of rare-earth phosphate and silicate environmental barrier coatings under molten CMAS corrosion source:Scientific ReportsThe fracture characteristics of rare-earth phosph...
2025
-
04
-
17
Click on the number of times:
0
Engineering Trap Distribution by Doping Rare Earth Ion for Mechanoluminescence Enhancement Mechanoluminescence materials exhibit fascinating optical properties due to their energy harvesting and ...
2025
-
04
-
16
Click on the number of times:
0
source:Tokyo University of ScienceQuasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an order...
2025
-
04
-
16
Click on the number of times:
0
Rare-Earth Metal Modified Co-Based Catalysts for Highly Selective Hydrogenation of Furfural to 1,5-Pentanediol source:ACS PublicationThe ability to effectively control furan ring opening is the k...