source:Phys.org
Rare earth elements from ore are vital for modern life but refining them after mining is costly, harms the environment and mostly occurs abroad.
A new study describes a proof of principle for engineering a bacterium, Gluconobacter oxydans, that takes a big first step towards meeting skyrocketing rare earth element demand in a way that matches the cost and efficiency of traditional thermochemical extraction and refinement methods and is clean enough to meet U.S. environmental standards.
'We're trying to come up with an environmentally friendly, low-temperature, low-pressure method for getting rare earth elements out of a rock,' said Buz Barstow, the paper's senior author and an assistant professor of biological and environmental engineering at Cornell University.
The elements—of which there are 15 in the periodic table—are necessary for everything from computers, cell phones, screens, microphones, wind turbines, electric vehicles and conductors to radars, sonars, LED lights and rechargeable batteries.
While the U.S. once refined its own rare earth elements, that production stopped more than five decades ago. Now, refinement of these elements takes place almost entirely in other countries, particularly China.
'The majority of rare earth element production and extraction is in the hands of foreign nations,' said co-author Esteban Gazel, associate professor of earth and atmospheric sciences at Cornell. 'So for the security of our country and way of life, we need to get back on track to controlling that resource.'
To meet U.S. annual needs for rare earth elements, roughly 71.5 million tonnes (~78.8 million tons) of raw ore would be required to extract 10,000 kilograms (~22,000 pounds) of elements.
Current methods rely on dissolving rock with hot sulphuric acid, followed by using organic solvents to separate very similar individual elements from each other in a solution.
'We want to figure out a way to make a bug that does that job better,' Barstow said.
G. oxydans is known for making an acid called biolixiviant that dissolves rock; the bacteria uses the acid to pull phosphates from rare earth elements. The researchers have begun to manipulate G. oxydans' genes so it extracts the elements more efficiently.
To do so, the researchers used a technology that Barstow helped develop, called Knockout Sudoku, that allowed them to disable the 2,733 genes in G. oxydans' genome one by one. The team curated mutants, each with a specific gene knocked out, so they could identify which genes play roles in getting elements out of rock.
'I am incredibly optimistic,' Gazel said. 'We have a process here that is going to be more efficient than anything that was done before.'
Alexa Schmitz, a postdoctoral researcher in Barstow's lab, is first author of the study, 'Gluconobacter oxydans Knockout Collection Finds Improved Rare Earth Element Extraction,' published in Nature Communications.