Process recovers 98% of rare-earths from assembled motors
The date of:
2021-09-10
viewed:
9
source:Drives and Control MagazineTests have shown that the process can recover 98% of a motor’s rare-earth elements (REEs). It also halves time taken to recover the materials compared to other methods, because there is no need to demagnetise the magnets, nor to remove and disassemble them from the motor.The process is aimed, in particular, at motors used in in electric vehicles, most of which rely on powerful neodymium magnets containing scarce rare-earth metals such as neodymium and dysprosium. China dominates the supply of these materials and this has led to wide fluctuations in price and availability. The ability to recycle REEs would reduce dependence on China and on the environmentally damaging processes used to mine and refine the materials.Nissan has been working on techniques for cutting the amount of REEs used in motor magnets since 2010. For example, the latest version of its Leaf EV uses magnets with 85% less heavy REEs than the 2010 model.The company has also been recycling REEs by removing magnets from faulty motors and returning them to suppliers. But these processes involve multiple steps, including manual disassembly. Developing a simpler, more economical process is important if recycling is to increase.Nissan has been collaborating with researchers at Waseda University since 2017, and last year they announced a pyrometallurgy process that does not require motor disassembly. The five-step process includes:adding a carburising material and pig iron to the motor, which is then heated to at least 1,400°C and starts to melt;adding iron oxide to oxidise the REEs in the molten mixture;using a borate-based flux to dissolve the rare-earth oxides and recover the REEs;separating the molten mixture into two liquid layers, with a molten oxide layer (slag) containing the REEs floating to the top, and a higher density iron-carbon alloy layer sinking to the bottom; and finallyrecovering the REEs from the slag.Waseda and Nissan are continuing large-scale testing of the process with the aim of developing a commercial version. Nissan will collect motors from EVs that are being recycled and will continue to develop its own recycling system.
Hot News
/
Related to recommend
2025
-
09
-
12
Click on the number of times:
0
Synergistic Coupling of Antenna Effect and Schottky Junction in Tb-Doped Covalent Organic Framework for Enhanced Electrochemiluminescence Sening of Isobutyryl Fentanyl来源:ACS PublicationsRational desig...
2025
-
09
-
10
Click on the number of times:
0
来源:ACS PublicationsThe development of a catalyst exhibiting high resistance to SO2 and H2O, while demonstrating superior CO oxidation performance, is of significant importance for specific industrial ...
2025
-
09
-
09
Click on the number of times:
0
Structural Investigation of Six Quinary Sulfides Synthesized via the Flux-Assisted Boron-Chalcogen Mixture (BCM) Method Eu2+ Containing Members of the RE3MTQ7 (M and T = Transition or Main Group Metal...
2025
-
09
-
08
Click on the number of times:
0
来源:ACS PublicationsRare-earth ion (Pr3+, Nd3+, and Tm3+)-doped yttrium vanadate (YVO4) crystals have aroused great research interest owing to their excellent laser performances. However, the microstru...