News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai
source:National University of SingaporeScientists from the National University of Singapore (NUS) have developed a highly effective and general molecular design that enables an enhancement in radioluminescence within organometallic scintillators by more than three orders of magnitude. This enhancement harnesses X-ray-induced triplet exciton recycling within lanthanide metal complexes.Detection of ionizing radiation is crucial in diverse fields, such as medical radiography, environmental monitoring and astronomy. As a result, significant efforts have been dedicated to the development of lumines...
Release time: 2024 - 12 - 26
viewed:0
source:sciencedirectAbstractRare earth elements (REEs) encompass 15 lanthanides and play a crucial role in modern technology. Despite their essential uses, REEs are emerging environmental contaminants due to their growing presence in industrial, agricultural, and medical applications. For the first time, the species sensitivity distribution (SSD) approach was applied to REEs considering 58 papers including toxicity about Ce, Dy, Er, Gd, La, Lu, Nd, Pr, Sm, and Y. SSD curves were constructed by log-logistic model providing comprehensive comparisons of the sensitivities of different species to t...
Release time: 2024 - 12 - 24
viewed:0
source:Yasmin Ahmed SalemMax Planck Institute for Sustainable Materials (MPI-SusMat) researchers have transformed dealloying—traditionally seen as a corrosive, destructive process—into a groundbreaking method for creating lightweight, high-strength alloys. By combining dealloying with alloying in a single step, the team developed nano-porous martensitic alloys using reactive gases like ammonia, which simultaneously remove oxygen and introduce nitrogen into the material's structure.This sustainable approach, published in Science Advances, offers energy-efficient alloy production with potent...
Release time: 2024 - 12 - 23
viewed:0
source: University of LiverpoolThe University of Liverpool has reported a significant advancement in engineering biology and clean energy. A team of researchers has developed an innovative light-driven hybrid nanoreactor that merges natural efficiency with cutting-edge synthetic precision to produce hydrogen—a clean and sustainable energy source.The study, published in ACS Catalysis, demonstrates a pioneering approach to artificial photocatalysis, addressing a critical challenge in using solar energy for fuel production. While nature's photosynthetic systems have evolved for optimal sunlig...
Release time: 2024 - 12 - 20
viewed:0
A total of1579articlePage one29/395Home pageThe previous page...  24252627282930313233...The next pageback
Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
犀牛云提供云计算服务