News News
Contact us
  • Customer service number:64321087
  • Commercial service telephone:13918059423
  • Technical service telephone:13918059423
  • Contact person: Mr. Cui 
  • Service email:shxtb@163.com
  • Address: room 107, building 8, no. 100, guilin road, xuhui district, Shanghai
source:phys.orgA team of researchers at Shanghai Jiao Tong University, working with a pair of colleagues from Harvard University, has developed a new way to synthesize single quantum nanomagnets that are based on metal-free, multi-porphyrin systems. In their paper published in the journal Nature Chemistry, the group describes their method and possible uses for it.Molecular magnets are materials that are capable of exhibiting ferromagnetism. They are different from other magnets because their building blocks are composed of organic molecules or a combination of coordination compounds. Chemists ...
Release time: 2022 - 11 - 01
viewed:1
Research on equivalent thermal network modeling for rare-earth giant magnetostrictive transducer source:natureAbstractOf crucial importance for giant magnetostrictive transducers (GMTs) design is to quickly and accurately analysis the temperature distribution. With the advantages of low calculation cost and high accuracy, thermal network modelling has been developed for thermal analysis of GMT. However, the existing thermal models have their limits to describe these complicated thermal behaviors in the GMTs: most of researches focused on steady-state which is incapable of capturing temper...
Release time: 2022 - 10 - 31
viewed:1
source:sciencedailyA group of researchers has, for the first time, identified rare earth elements produced by neutron star mergers.Details of this milestone were published in The Astrophysical Journal on October 26, 2022.When two neutron stars spiral inwards and merge, the resulting explosion produces a large amount of heavy elements that make up our Universe. The first confirmed example of this process was an event in 2017 named GW 170817. Yet, even five years later, identifying the specific elements created in neutron star mergers has eluded scientists, except for strontium identified in the...
Release time: 2022 - 10 - 28
viewed:1
source:scienceAbstractIn a quantum network, coherent emitters can be entangled over large distances using photonic channels. In solid-state devices, the required efficient light-emitter interface can be implemented by confining the light in nanophotonic structures. However, fluctuating charges and magnetic moments at the nearby interface then lead to spectral instability of the emitters. Here, we avoid this limitation when enhancing the photon emission up to 70(12)-fold using a Fabry-Perot resonator with an embedded 19-micrometer-thin crystalline membrane, in which we observe around 100 indivi...
Release time: 2022 - 10 - 27
viewed:3
Copyright ©Copyright 2018 2020 Shanghai rare earth association All Rights Reserved Shanghai ICP NO.2020034223
the host:Shanghai Association of Rare Earth the guide:Shanghai Development and Application Office of Rare Earth the organizer:Shanghai rare earth industry promotion center
犀牛云提供云计算服务